PyTorch量化技术教程:第五章 综合实战项目
PyTorch量化技术教程:综合实战项目
本教程旨在为读者提供一套全面且深入的PyTorch技术在量化交易领域应用的知识体系。系统涵盖PyTorch基础入门、核心组件详解、模型构建与训练,以及在A股市场中的实战应用。采用理论与实战深度融合的讲解模式,详细剖析如何运用PyTorch打造量化交易系统全流程。从数据处理的精细操作,到模型训练的优化技巧,再到交易信号生成的精准逻辑,以及风险管理的严谨策略,每个环节都通过专业示例和代码实现进行阐释,确保读者能够扎实掌握并灵活运用所学知识。
文中内容仅限技术学习与代码实践参考,市场存在不确定性,技术分析需谨慎验证,不构成任何投资建议。适合量化新手建立系统认知,为策略开发打下基础。
目录
-
PyTorch基础入门
- 1.1 PyTorch简介与环境搭建
- 1.2 Tensor基础操作与自动求导机制
-
PyTorch核心组件详解
- 2.1 nn.Module模块使用与自定义
- 2.2 优化器选择与使用
- 2.3 数据加载与预处理
-
PyTorch模型构建与训练
- 3.1 神经网络模型构建流程
- 3.2 模型训练技巧与实践
- 3.3 模型评估与保存加载
-
PyTorch在量化交易中的应用
- 4.1 时间序列分析与预测
- 4.2 量化交易策略构建与优化
- 4.3 风险管理与绩效评估
-
综合实战项目
- 5.1 基于A股市场的量化交易系统开发
- 5.2 模型部署与实际交易模拟
第五章 综合实战项目
5.1 基于A股市场的量化交易系统开发
项目概述
本项目旨在开发一个基于A股市场的量化交易系统,利用PyTorch构建预测模型,生成交易信号,并进行风险管理。系统将包括数据获取、数据预处理、模型训练、交易信号生成、交易执行和绩效评估等模块。
模块详细讲解
1. 数据获取模块
import tushare as ts
# 设置Tushare API令牌
ts.set_token("your_token")
pro = ts.pro_api()
def fetch_ashare_data(ts_code="600000.SH", start_date="20200101", end_date="20241231"):
"""
获取A股历史数据
"""
df = pro.daily(ts_code=ts_code, start_date=start_date, end_date=end_date)
df = df.sort_values("trade_date")
df.to_parquet(f"./data/{ts_code}_historical_data.parquet")
return df
# 获取数据示例
ashare_data = fetch_ashare_data()
2. 数据预处理模块
import pandas as pd
import talib
from sklearn.preprocessing import StandardScaler
def preprocess_data(file_path, sequence_length=10):
"""
数据预处理函数
"""
# 读取数据
data = pd.read_parquet(file_path)
# 计算技术指标
data["MA5"] = talib.MA(data["close"], timeperiod=5)
data["MA10"] = talib.MA(data["close"], timeperiod=10)
data["RSI"] = talib.RSI(data["close"], timeperiod=14)
data["MACD"], _, _ = talib.MACD(
data["close"], fastperiod=12, slowperiod=26, signalperiod=9
)
# 数据清洗
data.dropna(inplace=True)
# 特征选择
features = data[["open", "high", "low", "MA5", "MA10", "RSI", "MACD"]]
labels = data[["close"]]
# 归一化
scaler_features = StandardScaler()
scaler_labels = StandardScaler()
features_scaled = scaler_features.fit_transform(features)
labels_scaled = scaler_labels.fit_transform(labels)
# 创建序列数据
sequences = []
targets = []
for i in range(len(features_scaled) - sequence_length):
sequences.append(features_scaled[i : i + sequence_length])
targets.append(labels_scaled[i + sequence_length])
return np.array(sequences), np.array(targets), scaler_features, scaler_labels
# 预处理数据示例
sequences, targets, scaler_features, scaler_labels = preprocess_data(
"./data/600000.SH_historical_data.parquet"
)
3. 模型训练模块
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import TensorDataset, DataLoader
# 定义LSTM模型
class LSTMModel(nn.Module):
def __init__(self, input_size, hidden_size, output_size, num_layers):
super(LSTMModel, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).requires_grad_()
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).requires_grad_()
out, (hn, cn) = self.lstm(x, (h0.detach(), c0.detach()))
out = self.fc(out[:, -1, :])
return out
# 准备数据
input_size = sequences.shape[2]
hidden_size = 64
output_size = 1
num_layers = 2
batch_size = 32
epochs = 100
# 创建数据集和数据加载器
dataset = TensorDataset(
torch.tensor(sequences, dtype=torch.float32),
torch.tensor(targets, dtype=torch.float32),
)
train_size = int(0.8 * len(dataset))
test_size = len(dataset) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(
dataset, [train_size, test_size]
)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# 初始化模型、损失函数和优化器
model = LSTMModel(input_size, hidden_size, output_size, num_layers)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
for epoch in range(epochs):
model.train()
for inputs, targets in train_loader:
outputs = model(inputs)
loss = criterion(outputs, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch + 1) % 10 == 0:
model.eval()
with torch.no_grad():
total_loss = 0
for inputs, targets in test_loader:
outputs = model(inputs)
total_loss += criterion(outputs, targets).item()
avg_loss = total_loss / len(test_loader)
print(f"Epoch [{epoch+1}/{epochs}], Test Loss: {avg_loss:.4f}")
# 保存模型
torch.save(model.state_dict(), "./models/lstm_quant_model.pth")
输出
Epoch [10/100], Test Loss: 0.0092
Epoch [20/100], Test Loss: 0.0074
Epoch [30/100], Test Loss: 0.0082
Epoch [40/100], Test Loss: 0.0068
Epoch [50/100], Test Loss: 0.0098
Epoch [60/100], Test Loss: 0.0073
Epoch [70/100], Test Loss: 0.0075
Epoch [80/100], Test Loss: 0.0082
Epoch [90/100], Test Loss: 0.0098
Epoch [100/100], Test Loss: 0.0075
4. 交易信号生成模块
def generate_signals(
model, scaler_features, scaler_labels, new_data, sequence_length=10
):
"""
生成交易信号
"""
# 数据预处理
new_data["MA5"] = talib.MA(new_data["close"], timeperiod=5)
new_data["MA10"] = talib.MA(new_data["close"], timeperiod=10)
new_data["RSI"] = talib.RSI(new_data["close"], timeperiod=14)
new_data["MACD"], _, _ = talib.MACD(
new_data["close"], fastperiod=12, slowperiod=26, signalperiod=9
)
new_data.dropna(inplace=True)
features = new_data[["open", "high", "low", "MA5", "MA10", "RSI", "MACD"]]
features_scaled = scaler_features.transform(features)
# 创建序列
sequences = []
for i in range(len(features_scaled) - sequence_length):
sequences.append(features_scaled[i : i + sequence_length])
sequences_tensor = torch.tensor(sequences, dtype=torch.float32)
# 预测
model.eval()
with torch.no_grad():
predictions = model(sequences_tensor)
predictions_rescaled = scaler_labels.inverse_transform(predictions.numpy())
# 生成信号
signals = []
for i in range(len(predictions_rescaled)):
if predictions_rescaled[i] > new_data["close"].values[i + sequence_length]:
signals.append(1) # 买入信号
else:
signals.append(0) # 卖出信号
return signals
# 生成交易信号示例
new_data = pd.read_parquet("./data/600000.SH_historical_data.parquet")
signals = generate_signals(model, scaler_features, scaler_labels, new_data)
5. 交易执行模块
class TradingExecutor:
def __init__(self, initial_capital=100000):
self.initial_capital = initial_capital
self.capital = initial_capital
self.position = None # 当前持仓,None表示空仓
def execute_trade(self, signal, current_price):
"""
执行交易
"""
if signal == 1: # 买入信号
if self.position is None:
self.position = current_price
print(f"买入价格: {current_price}, 当前资金: {self.capital}")
else: # 卖出信号
if self.position is not None:
shares = self.capital / self.position
self.capital = shares * current_price
self.position = None
print(f"卖出价格: {current_price}, 当前资金: {self.capital}")
def get_performance(self):
"""
获取交易绩效
"""
return (self.capital - self.initial_capital) / self.initial_capital
# 执行交易示例
executor = TradingExecutor()
for i in range(len(signals)):
signal = signals[i]
current_price = new_data["close"].values[i + sequence_length]
executor.execute_trade(signal, current_price)
performance = executor.get_performance()
print(f"交易绩效: {performance:.4f}")
输出
买入价格: 10.64, 当前资金: 100000
卖出价格: 10.7, 当前资金: 100563.90977443608
买入价格: 10.43, 当前资金: 100563.90977443608
卖出价格: 10.09, 当前资金: 97285.69986807862
买入价格: 9.84, 当前资金: 97285.69986807862
卖出价格: 10.06, 当前资金: 99460.78665374705
...
买入价格: 10.34, 当前资金: 222604.95371091127
卖出价格: 10.47, 当前资金: 225403.66202642565
买入价格: 10.29, 当前资金: 225403.66202642565
交易绩效: 1.2540
6. 风险管理模块
class RiskManager:
def __init__(self, max_drawdown_threshold=0.1, stop_loss=0.05, take_profit=0.1):
self.max_drawdown_threshold = max_drawdown_threshold
self.stop_loss = stop_loss
self.take_profit = take_profit
def monitor_risk(self, cumulative_returns):
"""
监控风险
"""
if not cumulative_returns: # 如果累计收益率为空,返回 True
return True
current_dd = self.max_drawdown(cumulative_returns)
if current_dd > self.max_drawdown_threshold:
return False # 风险过高,停止交易
return True
def max_drawdown(self, cumulative_returns):
"""
计算最大回撤
"""
if not cumulative_returns:
return 0.0 # 如果没有数据,返回0
max_dd = 0.0
peak = cumulative_returns[0]
for ret in cumulative_returns:
if peak == 0: # 处理 peak 为0的情况
dd = 0.0
else:
dd = (peak - ret) / peak
if dd > max_dd:
max_dd = dd
if ret > peak:
peak = ret
return max_dd
def should_stop_loss(self, entry_price, current_price):
"""
判断是否触发止损
"""
return (current_price - entry_price) / entry_price <= -self.stop_loss
def should_take_profit(self, entry_price, current_price):
"""
判断是否触发止盈
"""
return (current_price - entry_price) / entry_price >= self.take_profit
# 风险管理示例
risk_manager = RiskManager()
position = None
cumulative_returns = []
for i in range(len(signals)):
signal = signals[i]
current_price = new_data["close"].values[i + sequence_length]
if signal == 1:
if position is None:
position = current_price
cumulative_returns.append(0)
else:
if risk_manager.should_stop_loss(
position, current_price
) or risk_manager.should_take_profit(position, current_price):
position = None
else:
position = None
if not risk_manager.monitor_risk(cumulative_returns):
print("风险过高,停止交易")
break
总结
本章通过一个完整的基于A股市场的量化交易系统开发项目,综合运用了PyTorch在量化交易中的各项技术。从数据获取到风险管理,每个模块都紧密结合实战需求,展示了如何利用PyTorch构建高效、稳定的量化交易系统。通过本章的学习,读者能够掌握从模型构建到实际交易的完整流程,为在实际市场中应用奠定坚实的基础。
风险提示与免责声明
本文内容基于公开信息研究整理,不构成任何形式的投资建议。历史表现不应作为未来收益保证,市场存在不可预见的波动风险。投资者需结合自身财务状况及风险承受能力独立决策,并自行承担交易结果。作者及发布方不对任何依据本文操作导致的损失承担法律责任。市场有风险,投资须谨慎。