当前位置: 首页 > news >正文

Langchain-Chatchat本地搭建ChatGLM3模型和提取PDF内容

文章目录

    • 1、软件要求
    • 2、安装CUDA
      • 2.1、安装gcc
      • 2.2、安装CUDA
    • 3、安装Anaconda3
      • 3.1、下载Anaconda3
      • 3.2、创建python虚拟环境
    • 4、部署系统
      • 4.1、下载源码
      • 4.2、安装依赖
      • 4.3、下载模型
      • 4.4、初始化配置和知识库
        • 4.4.1、初始化配置
        • 4.4.2、初始化知识库
      • 4.5、运行
      • 4.6、运行
        • 4.6.1、启动
        • 4.6.2、启动创建知识库和上传pdf
        • 4.6.3、问答提取内容

1、软件要求

Linux Ubuntu 22.04.5 kernel version 6.7
最低要求
该要求仅针对标准模式,轻量模式使用在线模型,不需要安装torch等库,也不需要显卡即可运行。

  • Python 版本: >= 3.8(很不稳定), < 3.12
  • CUDA 版本: >= 12.1
    推荐要求
    开发者在以下环境下进行代码调试,在该环境下能够避免最多环境问题。
  • Python 版本 == 3.11.7
  • CUDA 版本: == 12.1

本文是基于Ubuntu 22.04.1 LTS (GNU/Linux 5.15.133.1-microsoft-standard-WSL2 x86_64)测试

2、安装CUDA

2.1、安装gcc

输入gcc -version检查是否安装了gcc

~$ gcc --version
Command 'gcc' not found, but can be installed with:
sudo apt install gcc

2.2、安装CUDA

输入nvidia-smi查看支持CUDA的版本,支持的最高版本是12.3
在这里插入图片描述

当前pytorch最高支持12.1,在官网https://developer.nvidia.com/cuda-toolkit-archive下载12.1.1版本
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

输入命令下载安装

wget https://developer.download.nvidia.com/compute/cuda/12.1.1/local_installers/cuda_12.1.1_530.30.02_linux.run
sudo sh cuda_12.1.1_530.30.02_linux.run

配置环境变量,输入vi ~/.bashrc命令打开文件

export PATH=/usr/local/cuda-12.1/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-12.1/lib64:$LD_LIBRARY_PATH

刷新环境变量source ~/.bashrc

3、安装Anaconda3

3.1、下载Anaconda3

官网下载:https://www.anaconda.com/download/
清华镜像:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
当前最新版本:https://repo.anaconda.com/archive/Anaconda3-2023.09-0-Linux-x86_64.sh
下载完成,输入下边命令安装

sh Anaconda3-2023.09-0-Linux-x86_64.sh

3.2、创建python虚拟环境

conda create -n python311 python=3.11

# 激活环境
conda activate python311
# 如果activate不存在,改用source激活环境
# source activate python311
# 退出环境
conda deactivate python311 

4、部署系统

4.1、下载源码

浏览器下载:Langchain-Chatchat-0.2.10.zip:https://github.com/chatchat-space/Langchain-Chatchat/releases
也可以通过git拉取最新仓库

# git拉取最新仓库
git clone https://github.com/chatchat-space/Langchain-Chatchat.git 

4.2、安装依赖

# 进入目录
$ cd Langchain-Chatchat

# 安装全部依赖
# 使用国内源下载依赖更快:https://mirrors.aliyun.com/pypi/simple/,https://pypi.tuna.tsinghua.edu.cn/simple/
# 全部依赖
$ pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
# api运行依赖
$ pip install -r requirements_api.txt -i https://mirrors.aliyun.com/pypi/simple/
# webui运行依赖
$ pip install -r requirements_webui.txt -i https://mirrors.aliyun.com/pypi/simple/
# 默认依赖包括基本运行环境(FAISS向量库)。如果要使用 milvus/pg_vector 等向量库,请将 requirements.txt 中相应依赖取消注释再安装。

4.3、下载模型

$ git lfs install
# 下载LLM模型,国内从魔塔下载更快
$ git clone https://www.modelscope.cn/ZhipuAI/chatglm3-6b.git
# git clone https://huggingface.co/THUDM/chatglm3-6b

# 下载Embedding 模型,国内从魔塔下载更快
$ git clone https://www.modelscope.cn/AI-ModelScope/bge-large-zh.git
# git clone https://huggingface.co/BAAI/bge-large-zh

4.4、初始化配置和知识库

4.4.1、初始化配置
# 初始化Langchain-Chatchat-0.2.10\configs目录内的配置文件
$ python copy_config_example.py
  • 基础配置项 basic_config.py
    该配置基负责记录日志的格式和储存路径,通常不需要修改。
  • 模型配置项 model_config.py
EMBEDDING_MODEL = "bge-large-zh"  # 修改为bge-large-zh
# Embedding 模型运行设备。设为 "auto" 会自动检测(会有警告),也可手动设定为 "cuda","mps","cpu","xpu" 其中
EMBEDDING_DEVICE = "cuda"

# 要运行的 LLM 名称,可以包括本地模型和在线模型。列表中本地模型将在启动项目时全部加载。
# 列表中第一个模型将作为 API 和 WEBUI 的默认模型。
# 在这里,我们使用目前主流的两个离线模型,其中,chatglm3-6b 为默认加载模型。
LLM_MODELS = ["chatglm3-6b", "zhipu-api", "openai-api"]
# LLM 模型运行设备。设为"auto"会自动检测(会有警告),也可手动设定为 "cuda","mps","cpu","xpu" 其中之一。
LLM_DEVICE = "cuda" # 修改为cpu
MODEL_PATH = {
    "embed_model": {
        ......
        "bge-large-zh": "/mnt/d/project/python/model/BAAI/bge-large-zh", # 修改为物理路径
        ......
    },

    "llm_model": {
        ......
        "chatglm3-6b": "/mnt/d/project/python/model/THUDM/chatglm3-6b", # 修改为物理路径
        ......
    },
  • 提示词配置项 prompt_config.py
    提示词配置分为三个板块,分别对应三种聊天类型。
llm_chat: 基础的对话提示词, 通常来说,直接是用户输入的内容,没有系统提示词。
knowledge_base_chat: 与知识库对话的提示词,在模板中,我们为开发者设计了一个系统提示词,开发者可以自行更改。
agent_chat: 与Agent对话的提示词,同样,我们为开发者设计了一个系统提示词,开发者可以自行更改。
# prompt模板使用Jinja2语法,简单点就是用双大括号代替f-string的单大括号 请注意,本配置文件支持热加载,修改prompt模板后无需重启服务。
  • 数据库配置 kb_config.py
  • 服务和端口配置项 server_config.py
# 这些模型必须是在model_config.MODEL_PATH或ONLINE_MODEL中正确配置的。
# 在启动startup.py时,可用通过`--model-name xxxx yyyy`指定模型,不指定则为LLM_MODELS
FSCHAT_MODEL_WORKERS = {
    ......
    "chatglm3-6b": {
        "device": "cuda", # 配置为cuda
    },
   ......
}
4.4.2、初始化知识库
## 默认依赖包括基本运行环境(FAISS向量库),初始化自己的知识库
$ python init_database.py --recreate-vs

#如果您已经有创建过知识库,可以先执行以下命令创建或更新数据库表:
# python init_database.py --create-tables

4.5、运行

# 一键启动脚本 startup.py, 一键启动所有 Fastchat 服务、API 服务、WebUI 服务,示例代码:
$ python startup.py -a

并可使用 Ctrl + C 直接关闭所有运行服务。

可选参数包括 -a (或–all-webui), --all-api, --llm-api, -c (或–controller), --openai-api, -m (或–model-worker), --api, --webui,其中:

  • –all-webui 为一键启动 WebUI 所有依赖服务;
  • –all-api 为一键启动 API 所有依赖服务;
  • –llm-api 为一键启动 Fastchat 所有依赖的 LLM 服务;
  • –openai-api 为仅启动 FastChat 的 controller 和 openai-api-server 服务;
  • 其他为单独服务启动选项。
    若想指定非默认模型,需要用 --model-name 选项,示例:
$ python startup.py --all-webui --model-name Qwen-7B-Chat

更多信息可通过 python startup.py -h 查看。

4.6、运行

本文运行例子:上传一个PDF文档到知识库,并通过问答的方式提取PDF内容。

4.6.1、启动

在这里插入图片描述

4.6.2、启动创建知识库和上传pdf

在这里插入图片描述
在这里插入图片描述

4.6.3、问答提取内容

问答方式提取内容,除了第一个社会信用代码不准确外,其它问题都能返回准确答案
在这里插入图片描述

安装部署参考自

相关文章:

  • 【自然语言处理】【大模型】BitNet:用1-bit Transformer训练LLM
  • 蓝桥杯[OJ 2928]分糖果-CPP(贪心、字典序)
  • FreeRTOS教程2 任务管理
  • 加密 / MD5算法 /盐值
  • C语言——简易版扫雷
  • 解决达梦集成 JPA 时表和字段注释注解不生效的问题
  • 2.4_4 死锁的检测和解除
  • Python 导入Excel三维坐标数据 生成三维曲面地形图(体) 5-3、线条平滑曲面且可通过面观察柱体变化(三)
  • FPGA TestBench编写学习
  • 使用Vite构建Vue3+TypeScript项目
  • 深入了解网络流量清洗--使用免费的雷池社区版进行防护
  • 升级ChatGPT4.0失败的解决方案
  • 【亲测有效】解决三月八号ChatGPT 发消息无响应!
  • 【语法基础练习】1.变量、输入输出、表达式与顺序语句
  • MinGW-w64的下载与安装
  • 设计模式—桥接模式
  • SQL中如何添加数据
  • 安装zabbix
  • 风车IM即时通讯系统APP源码DJ2403版完整苹果安卓教程
  • Redis快速入门
  • 郑州通报涉“健康证”办理有关问题查处进展情况
  • 王毅集体会见加勒比建交国外长及代表
  • 中共中央、国务院印发《生态环境保护督察工作条例》
  • 国家统计局今年将在全国开展两次人口固定样本跟访调查
  • 总导演揭秘十五运会闭幕式:赴一场星辰大海之约
  • 时隔14个月北京怀柔区重启供地,北京建工以3.59亿元摘得