当前位置: 首页 > news >正文

SCI一区 | Matlab实现DBO-TCN-LSTM-Attention多变量时间序列预测

SCI一区 | Matlab实现DBO-TCN-LSTM-Attention多变量时间序列预测

目录

    • SCI一区 | Matlab实现DBO-TCN-LSTM-Attention多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.【SCI一区级】Matlab实现DBO-TCN-LSTM-Attention多变量时间序列预测(程序可以作为SCI一区级论文代码支撑);

2.基于DBO-TCN-LSTM-Attention蜣螂算法优化时间卷积长短期记忆神经网络融合注意力机制多变量时间序列预测,要求Matlab2023版以上,自注意力机制,一键单头注意力机制替换成多头注意力机制;

3.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;

4.data为数据集,main.m为主程序,运行即可,所有文件放在一个文件夹;

5.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;

6.优化学习率,神经元个数,注意力机制的键值, 正则化参数。
在这里插入图片描述

程序设计

  • 完整源码和数据获取方式私信博主回复Matlab实现DBO-TCN-LSTM-Attention多变量时间序列预测


%% DBO算法优化TCN-LSTM-Attention,实现多变量输入单步预测

clc;
clear 
close all

X = xlsread('data.xlsx');
num_samples = length(X);                            % 样本个数 
kim = 6;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测
or_dim = size(X,2);

%  重构数据集
for i = 1: num_samples - kim - zim + 1
    res(i, :) = [reshape(X(i: i + kim - 1,:), 1, kim*or_dim), X(i + kim + zim - 1,:)];
end


% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.9;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度


P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%  格式转换
for i = 1 : M 
    vp_train{i, 1} = p_train(:, i);
    vt_train{i, 1} = t_train(:, i);
end

for i = 1 : N 
    vp_test{i, 1} = p_test(:, i);
    vt_test{i, 1} = t_test(:, i);
end


参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关文章:

  • 搭建Redis哨兵集群
  • 安装DNS(BIND)并部署主域服务
  • 为什么要将项目部署到外部tomcat
  • 【第13届蓝桥杯C/C++B组省赛】顺子日期
  • Brainstorm绘制功能连接图(matlab)
  • Leetcode—242. 有效的字母异位词(字符串算法)
  • 国内 npm 镜像源推荐
  • TCP/IP 协议族详细知识点清单
  • 计算机网络--传输层(1)
  • 如何在MyBatis-Plus中优雅实现复杂查询:结合`JSON_CONTAINS`与动态条件构建
  • RAG优化:python从零实现query转换增强技术
  • 从零构建大语言模型全栈开发指南:第二部分:模型架构设计与实现-2.1.3前馈网络(FFN)与激活函数(GELU)优化
  • 什么是docker-compose,和Dockerfile的区别
  • 【高项】信息系统项目管理师(十)项目风险管理【5分】
  • hn航空app hnairSign unidbg 整合Springboot
  • 深入浅出理解Android系统中的SeLinux
  • CCF-CSP第13次认证第一题——跳一跳【简单】
  • 使用Redis实现分布式锁的技术详解
  • 嵌入式硬件工程师从小白到入门-速通版(一)
  • excel 列单元格合并(合并列相同行)
  • 简述企业网站的基本功能/查排名官网