【矩阵快速幂】 P10502 Matrix Power Series|省选-
本文涉及知识点
【矩阵快速幂】封装类及测试用例及样例
P10502 Matrix Power Series
题目描述
给定一个 n × n n×n n×n 矩阵 A A A 和一个正整数 k k k,找出和 S = A + A 2 + A 3 + . . . + A k S=A+A^2 +A^3 +...+A^k S=A+A2+A3+...+Ak。
输入格式
输入包含一个测试用例。输入的第一行包含三个正整数 n n n( n ≤ 30 n \le 30 n≤30)、 k k k( k ≤ 1 0 9 k \le 10^9 k≤109)和 m m m( m < 1 0 4 m < 10^4 m<104)。接下来的 n n n 行每行包含 n n n 个小于 32,768 的非负整数,按行主序给出 A A A 的元素。
输出格式
以与给定 A A A 相同的方式输出 S S S 的元素对 m m m 取模。
翻译来自于:ChatGPT
输入输出样例 #1
输入 #1
2 2 4
0 1
1 1
输出 #1
1 2
2 3
矩阵快速幂
扩容为2n2n矩阵matn,分成4个矩阵:左上角
A
k
A_k
Ak,右上
S
k
S_k
Sk,左下角全0,右下单位矩阵。
matmatk-1的右上角就是答案。
核心代码
#include <iostream>
#include <sstream>
#include <vector>
#include<map>
#include<unordered_map>
#include<set>
#include<unordered_set>
#include<string>
#include<algorithm>
#include<functional>
#include<queue>
#include <stack>
#include<iomanip>
#include<numeric>
#include <math.h>
#include <climits>
#include<assert.h>
#include<cstring>
#include<list>
#include <array>
#include <bitset>
using namespace std;
template<class T1, class T2>
std::istream& operator >> (std::istream& in, pair<T1, T2>& pr) {
in >> pr.first >> pr.second;
return in;
}
template<class T1, class T2, class T3 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3>& t) {
in >> get<0>(t) >> get<1>(t) >> get<2>(t);
return in;
}
template<class T1, class T2, class T3, class T4 >
std::istream& operator >> (std::istream& in, tuple<T1, T2, T3, T4>& t) {
in >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t);
return in;
}
template<class T = int>
vector<T> Read() {
int n;
scanf("%d", &n);
vector<T> ret(n);
for (int i = 0; i < n; i++) {
cin >> ret[i];
}
return ret;
}
template<class T = int>
vector<T> Read(int n) {
vector<T> ret(n);
for (int i = 0; i < n; i++) {
cin >> ret[i];
}
return ret;
}
template<int N = 1'000'000>
class COutBuff
{
public:
COutBuff() {
m_p = puffer;
}
template<class T>
void write(T x) {
int num[28], sp = 0;
if (x < 0)
*m_p++ = '-', x = -x;
if (!x)
*m_p++ = 48;
while (x)
num[++sp] = x % 10, x /= 10;
while (sp)
*m_p++ = num[sp--] + 48;
AuotToFile();
}
void writestr(const char* sz) {
strcpy(m_p, sz);
m_p += strlen(sz);
AuotToFile();
}
inline void write(char ch)
{
*m_p++ = ch;
AuotToFile();
}
inline void ToFile() {
fwrite(puffer, 1, m_p - puffer, stdout);
m_p = puffer;
}
~COutBuff() {
ToFile();
}
private:
inline void AuotToFile() {
if (m_p - puffer > N - 100) {
ToFile();
}
}
char puffer[N], * m_p;
};
template<int N = 1'000'000>
class CInBuff
{
public:
inline CInBuff() {}
inline CInBuff<N>& operator>>(char& ch) {
FileToBuf();
ch = *S++;
return *this;
}
inline CInBuff<N>& operator>>(int& val) {
FileToBuf();
int x(0), f(0);
while (!isdigit(*S))
f |= (*S++ == '-');
while (isdigit(*S))
x = (x << 1) + (x << 3) + (*S++ ^ 48);
val = f ? -x : x; S++;//忽略空格换行
return *this;
}
inline CInBuff& operator>>(long long& val) {
FileToBuf();
long long x(0); int f(0);
while (!isdigit(*S))
f |= (*S++ == '-');
while (isdigit(*S))
x = (x << 1) + (x << 3) + (*S++ ^ 48);
val = f ? -x : x; S++;//忽略空格换行
return *this;
}
template<class T1, class T2>
inline CInBuff& operator>>(pair<T1, T2>& val) {
*this >> val.first >> val.second;
return *this;
}
template<class T1, class T2, class T3>
inline CInBuff& operator>>(tuple<T1, T2, T3>& val) {
*this >> get<0>(val) >> get<1>(val) >> get<2>(val);
return *this;
}
template<class T1, class T2, class T3, class T4>
inline CInBuff& operator>>(tuple<T1, T2, T3, T4>& val) {
*this >> get<0>(val) >> get<1>(val) >> get<2>(val) >> get<3>(val);
return *this;
}
template<class T = int>
inline CInBuff& operator>>(vector<T>& val) {
int n;
*this >> n;
val.resize(n);
for (int i = 0; i < n; i++) {
*this >> val[i];
}
return *this;
}
template<class T = int>
vector<T> Read(int n) {
vector<T> ret(n);
for (int i = 0; i < n; i++) {
*this >> ret[i];
}
return ret;
}
template<class T = int>
vector<T> Read() {
vector<T> ret;
*this >> ret;
return ret;
}
private:
inline void FileToBuf() {
const int canRead = m_iWritePos - (S - buffer);
if (canRead >= 100) { return; }
if (m_bFinish) { return; }
for (int i = 0; i < canRead; i++)
{
buffer[i] = S[i];//memcpy出错
}
m_iWritePos = canRead;
buffer[m_iWritePos] = 0;
S = buffer;
int readCnt = fread(buffer + m_iWritePos, 1, N - m_iWritePos, stdin);
if (readCnt <= 0) { m_bFinish = true; return; }
m_iWritePos += readCnt;
buffer[m_iWritePos] = 0;
S = buffer;
}
int m_iWritePos = 0; bool m_bFinish = false;
char buffer[N + 10], * S = buffer;
};
template<class T = long long>
class CMatMul
{
public:
CMatMul(T llMod = 1e9 + 7) :m_llMod(llMod) {}
// 矩阵乘法
vector<vector<T>> multiply(const vector<vector<T>>& a, const vector<vector<T>>& b) {
const int r = a.size(), c = b.front().size(), iK = a.front().size();
assert(iK == b.size());
vector<vector<T>> ret(r, vector<T>(c));
for (int i = 0; i < r; i++)
{
for (int j = 0; j < c; j++)
{
for (int k = 0; k < iK; k++)
{
ret[i][j] = (ret[i][j] + a[i][k] * b[k][j]) % m_llMod;
}
}
}
return ret;
}
// 矩阵快速幂
vector<vector<T>> pow(const vector<vector<T>>& a, vector<vector<T>> b, T n) {
vector<vector<T>> res = a;
for (; n; n /= 2) {
if (n % 2) {
res = multiply(res, b);
}
b = multiply(b, b);
}
return res;
}
vector<vector<T>> pow(vector<vector<T>> pre, vector<vector<T>> mat, const string& str)
{
for (int i = str.length() - 1; i >= 0; i--) {
const int t = str[i] - '0';
pre = pow(pre, mat, t);
mat = pow(mat, mat, 9);
}
return pre;
}
vector<vector<T>> TotalRow(const vector<vector<T>>& a)
{
vector<vector<T>> b(a.front().size(), vector<T>(1, 1));
return multiply(a, b);
}
vector<vector<T>> CreateRow(int C) {
return vector<vector<T>>(1, vector<T>(C));
}
vector<vector<T>> CreateUint(int RC) {
vector<vector<T>> ret(RC, vector<T>(RC));
for (int i = 0; i < RC; i++) { ret[i][i] = 1; }
return ret;
}
protected:
const T m_llMod;
};
class KMPEx
{
public:
static vector<int> ZFunction(string s) {
int n = (int)s.length();
vector<int> z(n);
z[0] = n;
for (int i = 1, left = 0, r = 0; i < n; ++i) {
if (i <= r) {//如果此if,r-i+1可能为负数
z[i] = min(z[i - left], r - i + 1);
}
while ((i + z[i] < n) && (s[z[i]] == s[i + z[i]])) {
z[i]++;
}
if (i + z[i] - 1 > r) left = i, r = i + z[i] - 1;
}
return z;//z[i] 表示S与其后缀S[i,n]的最长公共前缀(LCP)的长度
}
};
class Solution {
public:
vector<vector<int>> Ans(const vector<vector<int>>& A, int k, int MOD) {
const int N = A.size();
CMatMul<> matMul(MOD);
vector<vector<long long>> pre(N, vector<long long>(N * 2));
vector<vector<long long>> mat(N * 2, vector<long long>(N * 2));
for (int r = 0; r < N; r++) {
mat[r + N][r + N] = 1;
for (int c = 0; c < N; c++) {
pre[r][c] = pre[r][c + N] = A[r][c];
mat[r][c] = mat[r][c + N] = A[r][c];
}
}
auto matAns = matMul.pow(pre, mat, k - 1);
vector<vector<int>> ans(N, vector<int>(N));
for (int r = 0; r < N; r++) {
for (int c = 0; c < N; c++) {
ans[r][c] = matAns[r][c + N];
}
}
return ans;
}
};
int main() {
#ifdef _DEBUG
freopen("a.in", "r", stdin);
#endif // DEBUG
ios::sync_with_stdio(0); cin.tie(0); cout.tie(0);
int n,k,m;
cin >> n >> k >>m ;
vector<vector<int>> A(n);
for (int i = 0; i < n; i++) {
A[i] = Read<int>(n);
}
auto res = Solution().Ans(A,k,m);
for (const auto& v : res) {
for (const auto& i : v) {
cout << i << " ";
}
cout << "\n";
}
#ifdef _DEBUG
//printf("start=%d,end=%d,T=%d", start,end,T);
//Out(edge, "edge=");
//Out(fish, ",fish=");
/*Out(edge, "edge=");
Out(que, "que=");*/
#endif // DEBUG
return 0;
}
单元测试
TEST_METHOD(TestMethod1)
{
auto res = Solution().Ans({ {0,1},{1,1} },1, 4);
AssertV(vector<vector<int>>{ {0,1},{1,1} }, res);
}
TEST_METHOD(TestMethod2)
{
auto res = Solution().Ans({ {0,1},{1,1} }, 2, 4);
AssertV(vector<vector<int>>{ {1, 2}, { 2,3 } }, res);
}
扩展阅读
我想对大家说的话 |
---|
工作中遇到的问题,可以按类别查阅鄙人的算法文章,请点击《算法与数据汇总》。 |
学习算法:按章节学习《喜缺全书算法册》,大量的题目和测试用例,打包下载。重视操作 |
有效学习:明确的目标 及时的反馈 拉伸区(难度合适) 专注 |
闻缺陷则喜(喜缺)是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
如果程序是一条龙,那算法就是他的是睛 |
失败+反思=成功 成功+反思=成功 |
视频课程
先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。