ESP32(2)WIFI链接
ESP32-S3的WiFi库支持配置及监控ESP32-S3的Wi-Fi连网功能。它支持配置基站模式(即STA 模式或 WiFi 客户端模式),此时 ESP32-S3 连接到接入点(AP)。还支持 AP 模式(即 SoftAP 模式或接入点模式),此时基站连接到 ESP32-S3。同时,支持 AP-STA 共存模式,此时ESP32-S3 既是接入点,同时又作为 STA。本章节的实验是基于乐鑫官方提供的 WiFi 库来实现的.
WiFi 模式概述
WiFi 主要有两种模式: STA 和 AP 模式。 AP 模式即无线接入点,是我们常说的手机热点,被其他设备连接; STA 模式即 Station,是连接热点的设备。另外, ESP32S3 可支持 STA 和 AP两种模式共存,就像手机那样可以开热点,也可以连接其他热点。
WiFi 库支持配置及监控 ESP32S3 Wi-Fi 连网功能。支持配置:
①: Station 模式(即 STA 模式或 WiFi 客户端模式),此时 ESP32 S3 连接到接入点 (AP)。
②: AP 模式(即 Soft-AP 模式或接入点模式),此时基站连接到 ESP32S3 设备。
③: Station/AP 共存模式(ESP32S3 既是接入点,同时又作为基站连接到另外一个接入点)。
④:上述模式的各种安全模式(WPA、 WPA2 及 WEP 等)。
⑤:扫描接入点(包括主动扫描及被动扫描)。
⑥:使用混杂模式监控 IEEE802.11 Wi-Fi 数据包。
下面讲解 ESP32S3 开启 WiFi 两种模式启动流程,如下:
WiFi-AP 启动流程
上图展示了 ESP32 系列芯片以 AP 模式开启 WiFi 的启动流程。首先,系统需要对 lwIP 协议栈进行初始化。接着,创建一个任务,该任务将用于触发相应的事件。然后,配置 WiFi 参数和AP 模式参数。最后,启动 WiFi,从而完成以 AP 模式开启 WiFi 的操作。
WiFi-STA 启动流程
上图展示了 ESP32 系列芯片以 STA 模式开启 WiFi 的启动流程。首先,系统需要创建定时器和事件组,并对 lwIP 协议栈进行初始化。接着,创建一个任务,该任务将用于触发相应的事件。然后,配置 WiFi 参数和 STA 模式参数。最后,启动 WiFi,从而完成以 STA 模式开启 WiFi的操作。
STA模式链接WIFI
扫描WIFI
/*
* SPDX-FileCopyrightText: 2010-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: CC0-1.0
*/
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "sdkconfig.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/event_groups.h"
#include "esp_chip_info.h"
#include "esp_flash.h"
#include "esp_system.h"
#include "esp_wifi.h"
#include "esp_log.h"
#include "esp_event.h"
#include "nvs_flash.h"
#include "regex.h"
#define DEFAULT_SCAN_LIST_SIZE 10
#ifdef CONFIG_EXAMPLE_USE_SCAN_CHANNEL_BITMAP
#define USE_CHANNEL_BITMAP 1
#define CHANNEL_LIST_SIZE 3
static uint8_t channel_list[CHANNEL_LIST_SIZE] = {1, 6, 11};
#endif /*CONFIG_EXAMPLE_USE_SCAN_CHANNEL_BITMAP*/
static const char *TAG = "scan";
static void print_auth_mode(int authmode)
{
switch (authmode) {
case WIFI_AUTH_OPEN:
ESP_LOGI(TAG, "Authmode \tWIFI_AUTH_OPEN");
break;
case WIFI_AUTH_OWE:
ESP_LOGI(TAG, "Authmode \tWIFI_AUTH_OWE");
break;
case WIFI_AUTH_WEP:
ESP_LOGI(TAG, "Authmode \tWIFI_AUTH_WEP");
break;
case WIFI_AUTH_WPA_PSK:
ESP_LOGI(TAG, "Authmode \tWIFI_AUTH_WPA_PSK");
break;
case WIFI_AUTH_WPA2_PSK:
ESP_LOGI(TAG, "Authmode \tWIFI_AUTH_WPA2_PSK");
break;
case WIFI_AUTH_WPA_WPA2_PSK:
ESP_LOGI(TAG, "Authmode \tWIFI_AUTH_WPA_WPA2_PSK");
break;
case WIFI_AUTH_ENTERPRISE:
ESP_LOGI(TAG, "Authmode \tWIFI_AUTH_ENTERPRISE");
break;
case WIFI_AUTH_WPA3_PSK:
ESP_LOGI(TAG, "Authmode \tWIFI_AUTH_WPA3_PSK");
break;
case WIFI_AUTH_WPA2_WPA3_PSK:
ESP_LOGI(TAG, "Authmode \tWIFI_AUTH_WPA2_WPA3_PSK");
break;
case WIFI_AUTH_WPA3_ENT_192:
ESP_LOGI(TAG, "Authmode \tWIFI_AUTH_WPA3_ENT_192");
break;
default:
ESP_LOGI(TAG, "Authmode \tWIFI_AUTH_UNKNOWN");
break;
}
}
static void print_cipher_type(int pairwise_cipher, int group_cipher)
{
switch (pairwise_cipher) {
case WIFI_CIPHER_TYPE_NONE:
ESP_LOGI(TAG, "Pairwise Cipher \tWIFI_CIPHER_TYPE_NONE");
break;
case WIFI_CIPHER_TYPE_WEP40:
ESP_LOGI(TAG, "Pairwise Cipher \tWIFI_CIPHER_TYPE_WEP40");
break;
case WIFI_CIPHER_TYPE_WEP104:
ESP_LOGI(TAG, "Pairwise Cipher \tWIFI_CIPHER_TYPE_WEP104");
break;
case WIFI_CIPHER_TYPE_TKIP:
ESP_LOGI(TAG, "Pairwise Cipher \tWIFI_CIPHER_TYPE_TKIP");
break;
case WIFI_CIPHER_TYPE_CCMP:
ESP_LOGI(TAG, "Pairwise Cipher \tWIFI_CIPHER_TYPE_CCMP");
break;
case WIFI_CIPHER_TYPE_TKIP_CCMP:
ESP_LOGI(TAG, "Pairwise Cipher \tWIFI_CIPHER_TYPE_TKIP_CCMP");
break;
case WIFI_CIPHER_TYPE_AES_CMAC128:
ESP_LOGI(TAG, "Pairwise Cipher \tWIFI_CIPHER_TYPE_AES_CMAC128");
break;
case WIFI_CIPHER_TYPE_SMS4:
ESP_LOGI(TAG, "Pairwise Cipher \tWIFI_CIPHER_TYPE_SMS4");
break;
case WIFI_CIPHER_TYPE_GCMP:
ESP_LOGI(TAG, "Pairwise Cipher \tWIFI_CIPHER_TYPE_GCMP");
break;
case WIFI_CIPHER_TYPE_GCMP256:
ESP_LOGI(TAG, "Pairwise Cipher \tWIFI_CIPHER_TYPE_GCMP256");
break;
default:
ESP_LOGI(TAG, "Pairwise Cipher \tWIFI_CIPHER_TYPE_UNKNOWN");
break;
}
switch (group_cipher) {
case WIFI_CIPHER_TYPE_NONE:
ESP_LOGI(TAG, "Group Cipher \tWIFI_CIPHER_TYPE_NONE");
break;
case WIFI_CIPHER_TYPE_WEP40:
ESP_LOGI(TAG, "Group Cipher \tWIFI_CIPHER_TYPE_WEP40");
break;
case WIFI_CIPHER_TYPE_WEP104:
ESP_LOGI(TAG, "Group Cipher \tWIFI_CIPHER_TYPE_WEP104");
break;
case WIFI_CIPHER_TYPE_TKIP:
ESP_LOGI(TAG, "Group Cipher \tWIFI_CIPHER_TYPE_TKIP");
break;
case WIFI_CIPHER_TYPE_CCMP:
ESP_LOGI(TAG, "Group Cipher \tWIFI_CIPHER_TYPE_CCMP");
break;
case WIFI_CIPHER_TYPE_TKIP_CCMP:
ESP_LOGI(TAG, "Group Cipher \tWIFI_CIPHER_TYPE_TKIP_CCMP");
break;
case WIFI_CIPHER_TYPE_SMS4:
ESP_LOGI(TAG, "Group Cipher \tWIFI_CIPHER_TYPE_SMS4");
break;
case WIFI_CIPHER_TYPE_GCMP:
ESP_LOGI(TAG, "Group Cipher \tWIFI_CIPHER_TYPE_GCMP");
break;
case WIFI_CIPHER_TYPE_GCMP256:
ESP_LOGI(TAG, "Group Cipher \tWIFI_CIPHER_TYPE_GCMP256");
break;
default:
ESP_LOGI(TAG, "Group Cipher \tWIFI_CIPHER_TYPE_UNKNOWN");
break;
}
}
#ifdef USE_CHANNEL_BITMAP
static void array_2_channel_bitmap(const uint8_t channel_list[], const uint8_t channel_list_size, wifi_scan_config_t *scan_config) {
for(uint8_t i = 0; i < channel_list_size; i++) {
uint8_t channel = channel_list[i];
scan_config->channel_bitmap.ghz_2_channels |= (1 << channel);
}
}
#endif /*USE_CHANNEL_BITMAP*/
/* Initialize Wi-Fi as sta and set scan method */
static void wifi_scan(void)
{
ESP_ERROR_CHECK(esp_netif_init());
ESP_ERROR_CHECK(esp_event_loop_create_default());
esp_netif_t *sta_netif = esp_netif_create_default_wifi_sta();
assert(sta_netif);
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK(esp_wifi_init(&cfg));
uint16_t number = DEFAULT_SCAN_LIST_SIZE;
wifi_ap_record_t ap_info[DEFAULT_SCAN_LIST_SIZE];
uint16_t ap_count = 0;
memset(ap_info, 0, sizeof(ap_info));
ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA));
ESP_ERROR_CHECK(esp_wifi_start());
#ifdef USE_CHANNEL_BITMAP
wifi_scan_config_t *scan_config = (wifi_scan_config_t *)calloc(1,sizeof(wifi_scan_config_t));
if (!scan_config) {
ESP_LOGE(TAG, "Memory Allocation for scan config failed!");
return;
}
array_2_channel_bitmap(channel_list, CHANNEL_LIST_SIZE, scan_config);
esp_wifi_scan_start(scan_config, true);
free(scan_config);
#else
esp_wifi_scan_start(NULL, true);
#endif /*USE_CHANNEL_BITMAP*/
ESP_LOGI(TAG, "Max AP number ap_info can hold = %u", number);
ESP_ERROR_CHECK(esp_wifi_scan_get_ap_num(&ap_count));
ESP_ERROR_CHECK(esp_wifi_scan_get_ap_records(&number, ap_info));
ESP_LOGI(TAG, "Total APs scanned = %u, actual AP number ap_info holds = %u", ap_count, number);
for (int i = 0; i < number; i++) {
ESP_LOGI(TAG, "SSID \t\t%s", ap_info[i].ssid);
ESP_LOGI(TAG, "RSSI \t\t%d", ap_info[i].rssi);
print_auth_mode(ap_info[i].authmode);
if (ap_info[i].authmode != WIFI_AUTH_WEP) {
print_cipher_type(ap_info[i].pairwise_cipher, ap_info[i].group_cipher);
}
ESP_LOGI(TAG, "Channel \t\t%d", ap_info[i].primary);
}
}
void app_main(void)
{
printf("Hello world!\n");
/* Print chip information */
esp_chip_info_t chip_info;
uint32_t flash_size;
esp_chip_info(&chip_info);
printf("This is %s chip with %d CPU core(s), %s%s%s%s, ",
CONFIG_IDF_TARGET,
chip_info.cores,
(chip_info.features & CHIP_FEATURE_WIFI_BGN) ? "WiFi/" : "",
(chip_info.features & CHIP_FEATURE_BT) ? "BT" : "",
(chip_info.features & CHIP_FEATURE_BLE) ? "BLE" : "",
(chip_info.features & CHIP_FEATURE_IEEE802154) ? ", 802.15.4 (Zigbee/Thread)" : "");
unsigned major_rev = chip_info.revision / 100;
unsigned minor_rev = chip_info.revision % 100;
printf("silicon revision v%d.%d, ", major_rev, minor_rev);
if(esp_flash_get_size(NULL, &flash_size) != ESP_OK) {
printf("Get flash size failed");
return;
}
printf("%" PRIu32 "MB %s flash\n", flash_size / (uint32_t)(1024 * 1024),
(chip_info.features & CHIP_FEATURE_EMB_FLASH) ? "embedded" : "external");
printf("Minimum free heap size: %" PRIu32 " bytes\n", esp_get_minimum_free_heap_size());
// Initialize NVS
esp_err_t ret = nvs_flash_init();
if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret == ESP_ERR_NVS_NEW_VERSION_FOUND) {
ESP_ERROR_CHECK(nvs_flash_erase());
ret = nvs_flash_init();
}
ESP_ERROR_CHECK( ret );
//init
wifi_scan();
while(1) {
vTaskDelay(1000);
}
}
连接WIFI(DPP)
/*
* SPDX-FileCopyrightText: 2010-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: CC0-1.0
*/
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "sdkconfig.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/event_groups.h"
#include "esp_chip_info.h"
#include "esp_flash.h"
#include "esp_system.h"
#include "esp_wifi.h"
#include "esp_dpp.h"
#include "esp_log.h"
#include "esp_event.h"
#include "nvs_flash.h"
#include "qrcode.h"
#ifdef CONFIG_ESP_DPP_LISTEN_CHANNEL_LIST
#define EXAMPLE_DPP_LISTEN_CHANNEL_LIST CONFIG_ESP_DPP_LISTEN_CHANNEL_LIST
#else
#define EXAMPLE_DPP_LISTEN_CHANNEL_LIST "6"
#endif
#ifdef CONFIG_ESP_DPP_BOOTSTRAPPING_KEY
#define EXAMPLE_DPP_BOOTSTRAPPING_KEY CONFIG_ESP_DPP_BOOTSTRAPPING_KEY
#else
#define EXAMPLE_DPP_BOOTSTRAPPING_KEY ""
#endif
#ifdef CONFIG_ESP_DPP_DEVICE_INFO
#define EXAMPLE_DPP_DEVICE_INFO CONFIG_ESP_DPP_DEVICE_INFO
#else
#define EXAMPLE_DPP_DEVICE_INFO 0
#endif
#define CURVE_SEC256R1_PKEY_HEX_DIGITS 64
static const char *TAG = "wifi dpp-enrollee";
wifi_config_t s_dpp_wifi_config;
static int s_retry_num = 0;
/* FreeRTOS event group to signal when we are connected*/
static EventGroupHandle_t s_dpp_event_group;
#define DPP_CONNECTED_BIT BIT0
#define DPP_CONNECT_FAIL_BIT BIT1
#define DPP_AUTH_FAIL_BIT BIT2
#define WIFI_MAX_RETRY_NUM 3
static void event_handler(void *arg, esp_event_base_t event_base,
int32_t event_id, void *event_data)
{
if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_START) {
ESP_ERROR_CHECK(esp_supp_dpp_start_listen());
ESP_LOGI(TAG, "Started listening for DPP Authentication");
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) {
if (s_retry_num < WIFI_MAX_RETRY_NUM) {
esp_wifi_connect();
s_retry_num++;
ESP_LOGI(TAG, "retry to connect to the AP");
} else {
xEventGroupSetBits(s_dpp_event_group, DPP_CONNECT_FAIL_BIT);
}
ESP_LOGI(TAG, "connect to the AP fail");
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_CONNECTED) {
ESP_LOGI(TAG, "Successfully connected to the AP ssid : %s ", s_dpp_wifi_config.sta.ssid);
} else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
ip_event_got_ip_t *event = (ip_event_got_ip_t *) event_data;
ESP_LOGI(TAG, "got ip:" IPSTR, IP2STR(&event->ip_info.ip));
s_retry_num = 0;
xEventGroupSetBits(s_dpp_event_group, DPP_CONNECTED_BIT);
}
}
void dpp_enrollee_event_cb(esp_supp_dpp_event_t event, void *data)
{
switch (event) {
case ESP_SUPP_DPP_URI_READY:
if (data != NULL) {
esp_qrcode_config_t cfg = ESP_QRCODE_CONFIG_DEFAULT();
ESP_LOGI(TAG, "Scan below QR Code to configure the enrollee:");
esp_qrcode_generate(&cfg, (const char *)data);
}
break;
case ESP_SUPP_DPP_CFG_RECVD:
memcpy(&s_dpp_wifi_config, data, sizeof(s_dpp_wifi_config));
s_retry_num = 0;
esp_wifi_set_config(ESP_IF_WIFI_STA, &s_dpp_wifi_config);
esp_wifi_connect();
break;
case ESP_SUPP_DPP_FAIL:
if (s_retry_num < 5) {
ESP_LOGI(TAG, "DPP Auth failed (Reason: %s), retry...", esp_err_to_name((int)data));
ESP_ERROR_CHECK(esp_supp_dpp_start_listen());
s_retry_num++;
} else {
xEventGroupSetBits(s_dpp_event_group, DPP_AUTH_FAIL_BIT);
}
break;
default:
break;
}
}
esp_err_t dpp_enrollee_bootstrap(void)
{
esp_err_t ret;
size_t pkey_len = strlen(EXAMPLE_DPP_BOOTSTRAPPING_KEY);
char *key = NULL;
if (pkey_len) {
/* Currently only NIST P-256 curve is supported, add prefix/postfix accordingly */
char prefix[] = "30310201010420";
char postfix[] = "a00a06082a8648ce3d030107";
if (pkey_len != CURVE_SEC256R1_PKEY_HEX_DIGITS) {
ESP_LOGI(TAG, "Invalid key length! Private key needs to be 32 bytes (or 64 hex digits) long");
return ESP_FAIL;
}
key = malloc(sizeof(prefix) + pkey_len + sizeof(postfix));
if (!key) {
ESP_LOGI(TAG, "Failed to allocate for bootstrapping key");
return ESP_ERR_NO_MEM;
}
sprintf(key, "%s%s%s", prefix, EXAMPLE_DPP_BOOTSTRAPPING_KEY, postfix);
}
/* Currently only supported method is QR Code */
ret = esp_supp_dpp_bootstrap_gen(EXAMPLE_DPP_LISTEN_CHANNEL_LIST, DPP_BOOTSTRAP_QR_CODE,
key, EXAMPLE_DPP_DEVICE_INFO);
if (key)
free(key);
return ret;
}
void dpp_enrollee_init(void)
{
s_dpp_event_group = xEventGroupCreate();
ESP_ERROR_CHECK(esp_netif_init());
ESP_ERROR_CHECK(esp_event_loop_create_default());
esp_netif_create_default_wifi_sta();
ESP_ERROR_CHECK(esp_event_handler_register(WIFI_EVENT, ESP_EVENT_ANY_ID, &event_handler, NULL));
ESP_ERROR_CHECK(esp_event_handler_register(IP_EVENT, IP_EVENT_STA_GOT_IP, &event_handler, NULL));
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK(esp_wifi_init(&cfg));
ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_STA));
ESP_ERROR_CHECK(esp_supp_dpp_init(dpp_enrollee_event_cb));
ESP_ERROR_CHECK(dpp_enrollee_bootstrap());
ESP_ERROR_CHECK(esp_wifi_start());
/* Waiting until either the connection is established (WIFI_CONNECTED_BIT) or connection failed for the maximum
* number of re-tries (WIFI_FAIL_BIT). The bits are set by event_handler() (see above) */
EventBits_t bits = xEventGroupWaitBits(s_dpp_event_group,
DPP_CONNECTED_BIT | DPP_CONNECT_FAIL_BIT | DPP_AUTH_FAIL_BIT,
pdFALSE,
pdFALSE,
portMAX_DELAY);
/* xEventGroupWaitBits() returns the bits before the call returned, hence we can test which event actually
* happened. */
if (bits & DPP_CONNECTED_BIT) {
ESP_LOGI(TAG, "connected to ap SSID:%s password:%s",
s_dpp_wifi_config.sta.ssid, s_dpp_wifi_config.sta.password);
} else if (bits & DPP_CONNECT_FAIL_BIT) {
ESP_LOGI(TAG, "Failed to connect to SSID:%s, password:%s",
s_dpp_wifi_config.sta.ssid, s_dpp_wifi_config.sta.password);
} else if (bits & DPP_AUTH_FAIL_BIT) {
ESP_LOGI(TAG, "DPP Authentication failed after %d retries", s_retry_num);
} else {
ESP_LOGE(TAG, "UNEXPECTED EVENT");
}
esp_supp_dpp_deinit();
ESP_ERROR_CHECK(esp_event_handler_unregister(IP_EVENT, IP_EVENT_STA_GOT_IP, &event_handler));
ESP_ERROR_CHECK(esp_event_handler_unregister(WIFI_EVENT, ESP_EVENT_ANY_ID, &event_handler));
vEventGroupDelete(s_dpp_event_group);
}
void app_main(void)
{
printf("Hello world!\n");
/* Print chip information */
esp_chip_info_t chip_info;
uint32_t flash_size;
esp_chip_info(&chip_info);
printf("This is %s chip with %d CPU core(s), %s%s%s%s, ",
CONFIG_IDF_TARGET,
chip_info.cores,
(chip_info.features & CHIP_FEATURE_WIFI_BGN) ? "WiFi/" : "",
(chip_info.features & CHIP_FEATURE_BT) ? "BT" : "",
(chip_info.features & CHIP_FEATURE_BLE) ? "BLE" : "",
(chip_info.features & CHIP_FEATURE_IEEE802154) ? ", 802.15.4 (Zigbee/Thread)" : "");
unsigned major_rev = chip_info.revision / 100;
unsigned minor_rev = chip_info.revision % 100;
printf("silicon revision v%d.%d, ", major_rev, minor_rev);
if(esp_flash_get_size(NULL, &flash_size) != ESP_OK) {
printf("Get flash size failed");
return;
}
printf("%" PRIu32 "MB %s flash\n", flash_size / (uint32_t)(1024 * 1024),
(chip_info.features & CHIP_FEATURE_EMB_FLASH) ? "embedded" : "external");
printf("Minimum free heap size: %" PRIu32 " bytes\n", esp_get_minimum_free_heap_size());
// Initialize NVS
esp_err_t ret = nvs_flash_init();
if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret == ESP_ERR_NVS_NEW_VERSION_FOUND) {
ESP_ERROR_CHECK(nvs_flash_erase());
ret = nvs_flash_init();
}
ESP_ERROR_CHECK( ret );
//init
dpp_enrollee_init();
while(1) {
vTaskDelay(1000);
}
}
AP_STA
/*
* SPDX-FileCopyrightText: 2010-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: CC0-1.0
*/
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "sdkconfig.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/event_groups.h"
#include "esp_chip_info.h"
#include "esp_flash.h"
#include "esp_system.h"
#include "esp_wifi.h"
#include "esp_mac.h"
#include "esp_netif.h"
#include "esp_netif_net_stack.h"
#include "esp_log.h"
#include "esp_event.h"
#include "nvs_flash.h"
#include "lwip/inet.h"
#include "lwip/netdb.h"
#include "lwip/sockets.h"
#include "lwip/lwip_napt.h"
#include "lwip/err.h"
#include "lwip/sys.h"
/* STA Configuration */
#define EXAMPLE_ESP_WIFI_STA_SSID "xxx"
#define EXAMPLE_ESP_WIFI_STA_PASSWD "xxx"
#define EXAMPLE_ESP_MAXIMUM_RETRY 3
#define CONFIG_ESP_WIFI_AUTH_WPA_WPA2_PSK 1
#if CONFIG_ESP_WIFI_AUTH_OPEN
#define ESP_WIFI_SCAN_AUTH_MODE_THRESHOLD WIFI_AUTH_OPEN
#elif CONFIG_ESP_WIFI_AUTH_WEP
#define ESP_WIFI_SCAN_AUTH_MODE_THRESHOLD WIFI_AUTH_WEP
#elif CONFIG_ESP_WIFI_AUTH_WPA_PSK
#define ESP_WIFI_SCAN_AUTH_MODE_THRESHOLD WIFI_AUTH_WPA_PSK
#elif CONFIG_ESP_WIFI_AUTH_WPA2_PSK
#define ESP_WIFI_SCAN_AUTH_MODE_THRESHOLD WIFI_AUTH_WPA2_PSK
#elif CONFIG_ESP_WIFI_AUTH_WPA_WPA2_PSK
#define ESP_WIFI_SCAN_AUTH_MODE_THRESHOLD WIFI_AUTH_WPA_WPA2_PSK
#elif CONFIG_ESP_WIFI_AUTH_WPA3_PSK
#define ESP_WIFI_SCAN_AUTH_MODE_THRESHOLD WIFI_AUTH_WPA3_PSK
#elif CONFIG_ESP_WIFI_AUTH_WPA2_WPA3_PSK
#define ESP_WIFI_SCAN_AUTH_MODE_THRESHOLD WIFI_AUTH_WPA2_WPA3_PSK
#elif CONFIG_ESP_WIFI_AUTH_WAPI_PSK
#define ESP_WIFI_SCAN_AUTH_MODE_THRESHOLD WIFI_AUTH_WAPI_PSK
#endif
/* AP Configuration */
#define EXAMPLE_ESP_WIFI_AP_SSID "ESP32-S3"
#define EXAMPLE_ESP_WIFI_AP_PASSWD "12345678"
#define EXAMPLE_ESP_WIFI_CHANNEL 6
#define EXAMPLE_MAX_STA_CONN 5
/* The event group allows multiple bits for each event, but we only care about two events:
* - we are connected to the AP with an IP
* - we failed to connect after the maximum amount of retries */
#define WIFI_CONNECTED_BIT BIT0
#define WIFI_FAIL_BIT BIT1
/*DHCP server option*/
#define DHCPS_OFFER_DNS 0x02
static const char *TAG_AP = "WiFi SoftAP";
static const char *TAG_STA = "WiFi Sta";
static int s_retry_num = 0;
/* FreeRTOS event group to signal when we are connected/disconnected */
static EventGroupHandle_t s_wifi_event_group;
static void wifi_event_handler(void *arg, esp_event_base_t event_base,
int32_t event_id, void *event_data)
{
if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_AP_STACONNECTED) {
wifi_event_ap_staconnected_t *event = (wifi_event_ap_staconnected_t *) event_data;
ESP_LOGI(TAG_AP, "Station "MACSTR" joined, AID=%d",
MAC2STR(event->mac), event->aid);
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_AP_STADISCONNECTED) {
wifi_event_ap_stadisconnected_t *event = (wifi_event_ap_stadisconnected_t *) event_data;
ESP_LOGI(TAG_AP, "Station "MACSTR" left, AID=%d, reason:%d",
MAC2STR(event->mac), event->aid, event->reason);
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_START) {
esp_wifi_connect();
ESP_LOGI(TAG_STA, "Station started");
} else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
ip_event_got_ip_t *event = (ip_event_got_ip_t *) event_data;
ESP_LOGI(TAG_STA, "Got IP:" IPSTR, IP2STR(&event->ip_info.ip));
s_retry_num = 0;
xEventGroupSetBits(s_wifi_event_group, WIFI_CONNECTED_BIT);
}
}
/* Initialize soft AP */
esp_netif_t *wifi_init_softap(void)
{
esp_netif_t *esp_netif_ap = esp_netif_create_default_wifi_ap();
wifi_config_t wifi_ap_config = {
.ap = {
.ssid = EXAMPLE_ESP_WIFI_AP_SSID,
.ssid_len = strlen(EXAMPLE_ESP_WIFI_AP_SSID),
.channel = EXAMPLE_ESP_WIFI_CHANNEL,
.password = EXAMPLE_ESP_WIFI_AP_PASSWD,
.max_connection = EXAMPLE_MAX_STA_CONN,
.authmode = WIFI_AUTH_WPA2_PSK,
.pmf_cfg = {
.required = false,
},
},
};
if (strlen(EXAMPLE_ESP_WIFI_AP_PASSWD) == 0) {
wifi_ap_config.ap.authmode = WIFI_AUTH_OPEN;
}
ESP_ERROR_CHECK(esp_wifi_set_config(WIFI_IF_AP, &wifi_ap_config));
ESP_LOGI(TAG_AP, "wifi_init_softap finished. SSID:%s password:%s channel:%d",
EXAMPLE_ESP_WIFI_AP_SSID, EXAMPLE_ESP_WIFI_AP_PASSWD, EXAMPLE_ESP_WIFI_CHANNEL);
return esp_netif_ap;
}
/* Initialize wifi station */
esp_netif_t *wifi_init_sta(void)
{
esp_netif_t *esp_netif_sta = esp_netif_create_default_wifi_sta();
wifi_config_t wifi_sta_config = {
.sta = {
.ssid = EXAMPLE_ESP_WIFI_STA_SSID,
.password = EXAMPLE_ESP_WIFI_STA_PASSWD,
.scan_method = WIFI_ALL_CHANNEL_SCAN,
.failure_retry_cnt = EXAMPLE_ESP_MAXIMUM_RETRY,
/* Authmode threshold resets to WPA2 as default if password matches WPA2 standards (password len => 8).
* If you want to connect the device to deprecated WEP/WPA networks, Please set the threshold value
* to WIFI_AUTH_WEP/WIFI_AUTH_WPA_PSK and set the password with length and format matching to
* WIFI_AUTH_WEP/WIFI_AUTH_WPA_PSK standards.
*/
.threshold.authmode = ESP_WIFI_SCAN_AUTH_MODE_THRESHOLD,
.sae_pwe_h2e = WPA3_SAE_PWE_BOTH,
},
};
ESP_ERROR_CHECK(esp_wifi_set_config(WIFI_IF_STA, &wifi_sta_config) );
ESP_LOGI(TAG_STA, "wifi_init_sta finished.");
return esp_netif_sta;
}
void softap_set_dns_addr(esp_netif_t *esp_netif_ap,esp_netif_t *esp_netif_sta)
{
esp_netif_dns_info_t dns;
esp_netif_get_dns_info(esp_netif_sta,ESP_NETIF_DNS_MAIN,&dns);
uint8_t dhcps_offer_option = DHCPS_OFFER_DNS;
ESP_ERROR_CHECK_WITHOUT_ABORT(esp_netif_dhcps_stop(esp_netif_ap));
ESP_ERROR_CHECK(esp_netif_dhcps_option(esp_netif_ap, ESP_NETIF_OP_SET, ESP_NETIF_DOMAIN_NAME_SERVER, &dhcps_offer_option, sizeof(dhcps_offer_option)));
ESP_ERROR_CHECK(esp_netif_set_dns_info(esp_netif_ap, ESP_NETIF_DNS_MAIN, &dns));
ESP_ERROR_CHECK_WITHOUT_ABORT(esp_netif_dhcps_start(esp_netif_ap));
}
void net_init(void)
{
ESP_ERROR_CHECK(esp_netif_init());
ESP_ERROR_CHECK(esp_event_loop_create_default());
/* Initialize event group */
s_wifi_event_group = xEventGroupCreate();
/* Register Event handler */
ESP_ERROR_CHECK(esp_event_handler_instance_register(WIFI_EVENT,
ESP_EVENT_ANY_ID,
&wifi_event_handler,
NULL,
NULL));
ESP_ERROR_CHECK(esp_event_handler_instance_register(IP_EVENT,
IP_EVENT_STA_GOT_IP,
&wifi_event_handler,
NULL,
NULL));
/*Initialize WiFi */
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK(esp_wifi_init(&cfg));
ESP_ERROR_CHECK(esp_wifi_set_mode(WIFI_MODE_APSTA));
/* Initialize AP */
ESP_LOGI(TAG_AP, "ESP_WIFI_MODE_AP");
esp_netif_t *esp_netif_ap = wifi_init_softap();
/* Initialize STA */
ESP_LOGI(TAG_STA, "ESP_WIFI_MODE_STA");
esp_netif_t *esp_netif_sta = wifi_init_sta();
/* Start WiFi */
ESP_ERROR_CHECK(esp_wifi_start() );
/*
* Wait until either the connection is established (WIFI_CONNECTED_BIT) or
* connection failed for the maximum number of re-tries (WIFI_FAIL_BIT).
* The bits are set by event_handler() (see above)
*/
EventBits_t bits = xEventGroupWaitBits(s_wifi_event_group,
WIFI_CONNECTED_BIT | WIFI_FAIL_BIT,
pdFALSE,
pdFALSE,
portMAX_DELAY);
/* xEventGroupWaitBits() returns the bits before the call returned,
* hence we can test which event actually happened. */
if (bits & WIFI_CONNECTED_BIT) {
ESP_LOGI(TAG_STA, "connected to ap SSID:%s password:%s",
EXAMPLE_ESP_WIFI_STA_SSID, EXAMPLE_ESP_WIFI_STA_PASSWD);
softap_set_dns_addr(esp_netif_ap,esp_netif_sta);
} else if (bits & WIFI_FAIL_BIT) {
ESP_LOGI(TAG_STA, "Failed to connect to SSID:%s, password:%s",
EXAMPLE_ESP_WIFI_STA_SSID, EXAMPLE_ESP_WIFI_STA_PASSWD);
} else {
ESP_LOGE(TAG_STA, "UNEXPECTED EVENT");
return;
}
/* Set sta as the default interface */
esp_netif_set_default_netif(esp_netif_sta);
/* Enable napt on the AP netif */
if (esp_netif_napt_enable(esp_netif_ap) != ESP_OK) {
ESP_LOGE(TAG_STA, "NAPT not enabled on the netif: %p", esp_netif_ap);
}
}
void app_main(void)
{
printf("Hello world!\n");
/* Print chip information */
esp_chip_info_t chip_info;
uint32_t flash_size;
esp_chip_info(&chip_info);
printf("This is %s chip with %d CPU core(s), %s%s%s%s, ",
CONFIG_IDF_TARGET,
chip_info.cores,
(chip_info.features & CHIP_FEATURE_WIFI_BGN) ? "WiFi/" : "",
(chip_info.features & CHIP_FEATURE_BT) ? "BT" : "",
(chip_info.features & CHIP_FEATURE_BLE) ? "BLE" : "",
(chip_info.features & CHIP_FEATURE_IEEE802154) ? ", 802.15.4 (Zigbee/Thread)" : "");
unsigned major_rev = chip_info.revision / 100;
unsigned minor_rev = chip_info.revision % 100;
printf("silicon revision v%d.%d, ", major_rev, minor_rev);
if(esp_flash_get_size(NULL, &flash_size) != ESP_OK) {
printf("Get flash size failed");
return;
}
printf("%" PRIu32 "MB %s flash\n", flash_size / (uint32_t)(1024 * 1024),
(chip_info.features & CHIP_FEATURE_EMB_FLASH) ? "embedded" : "external");
printf("Minimum free heap size: %" PRIu32 " bytes\n", esp_get_minimum_free_heap_size());
// Initialize NVS
esp_err_t ret = nvs_flash_init();
if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret == ESP_ERR_NVS_NEW_VERSION_FOUND) {
ESP_ERROR_CHECK(nvs_flash_erase());
ret = nvs_flash_init();
}
ESP_ERROR_CHECK( ret );
//init
net_init();
while(1) {
vTaskDelay(1000);
}
}
智能配网
ESP32-S3的一键配网模式是一种方便快捷的WiFi配置方式。在这种模式下,用户无需手动输入 WiFi 的 SSID 和密码等信息,只需要通过一键操作,即可完成 WiFi 的配置和连接。本章节,作者使用乐鑫官方提供的 SmartConfig 软件一键配置 WiFi 账号与密码。
主流 WIFI 配网方式简介
目前主流的 WIFI 配网方式主要有以下三种:
一、 SoftAP 配网
ESP32-S3 会建立一个 WiFi 热点(AP 模式),用户将手机连接到这个热点后,将要连接的WiFi 信息发送给 ESP32-S3, ESP32-S3 得到 SSID 和密码。
①:优点:很可靠,成功率基本达到 100%,设备端的代码简单。
②:缺点:需要手动切换手机 WiFi 连接的网络,先连接到 ESP32 的 AP 网络,配置完成后再恢复连接正常 WiFi 网络,操作上存在复杂性,可能给用户带来困扰。
③:官方支持:没有提供 Demo。
二、 Smartconfig 配网
ESP32-S3 处于混杂模式下,监听网络中的所有报文,手机 APP 将当前连接的 SSID 和密码编码到 UDP 报文中,通过广播或组播的方式发送报文, ESP32-S3 接收到 UDP 报文后解码,得
到 SSID 和密码,然后使用该组 SSID 和密码去连接网络。
①:优缺点:简洁,用户容易操作,但配网成功率受环境影响较大。
②:官方支持:提供 Demo 和 smart_config 例程。
三、 Airkiss 配网
AirKiss 是微信硬件平台提供的一种 WIFI 设备快速入网配置技术。要使用微信客户端的方式配置设备入网,需要设备支持 AirKiss 技术。 Airkiss 的原理和 Smartconfig 很类似,设备工作在混杂模式下,微信客户端发送包含 SSID 和密码的广播包,设备收到广播包解码得到 SSID 和密码。详细的可以参考微信官方的介绍。
①:优缺点:简洁,用户容易操作,但配网成功率受环境影响较大。
②:官方支持:提供 Demo 和 smart_config 例程。
本实验以 Smartconfig 软件对 ESP32-S3 设备进行一键配网,该软件的安装包可在乐鑫官方网站的相关下载网页找到,如下图所示。
smart_config 程序设计
/*
* SPDX-FileCopyrightText: 2010-2022 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: CC0-1.0
*/
#include <stdio.h>
#include <string.h>
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/event_groups.h"
#include "esp_chip_info.h"
#include "esp_eap_client.h"
#include "esp_smartconfig.h"
#include "esp_flash.h"
#include "nvs_flash.h"
#include "esp_system.h"
#include "esp_log.h"
#include "esp_event.h"
#include "esp_wifi.h"
#include "esp_netif.h"
#include "esp_mac.h"
static EventGroupHandle_t s_wifi_event_group;
static const int CONNECTED_BIT = BIT0;
static const int ESPTOUCH_DONE_BIT = BIT1;
static const char *TAG = "smartconfig";
static void smartconfig_task(void * parm);
static void event_handler(void* arg, esp_event_base_t event_base,
int32_t event_id, void* event_data)
{
if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_START) {
xTaskCreate(smartconfig_task, "smartconfig_task", 4096, NULL, 3, NULL);
} else if (event_base == WIFI_EVENT && event_id == WIFI_EVENT_STA_DISCONNECTED) {
esp_wifi_connect();
xEventGroupClearBits(s_wifi_event_group, CONNECTED_BIT);
} else if (event_base == IP_EVENT && event_id == IP_EVENT_STA_GOT_IP) {
xEventGroupSetBits(s_wifi_event_group, CONNECTED_BIT);
} else if (event_base == SC_EVENT && event_id == SC_EVENT_SCAN_DONE) {
ESP_LOGI(TAG, "Scan done");
} else if (event_base == SC_EVENT && event_id == SC_EVENT_FOUND_CHANNEL) {
ESP_LOGI(TAG, "Found channel");
} else if (event_base == SC_EVENT && event_id == SC_EVENT_GOT_SSID_PSWD) {
ESP_LOGI(TAG, "Got SSID and password");
smartconfig_event_got_ssid_pswd_t *evt = (smartconfig_event_got_ssid_pswd_t *)event_data;
wifi_config_t wifi_config;
uint8_t ssid[33] = { 0 };
uint8_t password[65] = { 0 };
uint8_t rvd_data[33] = { 0 };
bzero(&wifi_config, sizeof(wifi_config_t));
memcpy(wifi_config.sta.ssid, evt->ssid, sizeof(wifi_config.sta.ssid));
memcpy(wifi_config.sta.password, evt->password, sizeof(wifi_config.sta.password));
#ifdef CONFIG_SET_MAC_ADDRESS_OF_TARGET_AP
wifi_config.sta.bssid_set = evt->bssid_set;
if (wifi_config.sta.bssid_set == true) {
ESP_LOGI(TAG, "Set MAC address of target AP: "MACSTR" ", MAC2STR(evt->bssid));
memcpy(wifi_config.sta.bssid, evt->bssid, sizeof(wifi_config.sta.bssid));
}
#endif
memcpy(ssid, evt->ssid, sizeof(evt->ssid));
memcpy(password, evt->password, sizeof(evt->password));
ESP_LOGI(TAG, "SSID:%s", ssid);
ESP_LOGI(TAG, "PASSWORD:%s", password);
if (evt->type == SC_TYPE_ESPTOUCH_V2) {
ESP_ERROR_CHECK( esp_smartconfig_get_rvd_data(rvd_data, sizeof(rvd_data)) );
ESP_LOGI(TAG, "RVD_DATA:");
for (int i=0; i<33; i++) {
printf("%02x ", rvd_data[i]);
}
printf("\n");
}
ESP_ERROR_CHECK( esp_wifi_disconnect() );
ESP_ERROR_CHECK( esp_wifi_set_config(WIFI_IF_STA, &wifi_config) );
esp_wifi_connect();
} else if (event_base == SC_EVENT && event_id == SC_EVENT_SEND_ACK_DONE) {
xEventGroupSetBits(s_wifi_event_group, ESPTOUCH_DONE_BIT);
}
}
static void initialise_wifi(void)
{
ESP_ERROR_CHECK(esp_netif_init());
s_wifi_event_group = xEventGroupCreate();
ESP_ERROR_CHECK(esp_event_loop_create_default());
esp_netif_t *sta_netif = esp_netif_create_default_wifi_sta();
assert(sta_netif);
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
ESP_ERROR_CHECK( esp_wifi_init(&cfg) );
ESP_ERROR_CHECK( esp_event_handler_register(WIFI_EVENT, ESP_EVENT_ANY_ID, &event_handler, NULL) );
ESP_ERROR_CHECK( esp_event_handler_register(IP_EVENT, IP_EVENT_STA_GOT_IP, &event_handler, NULL) );
ESP_ERROR_CHECK( esp_event_handler_register(SC_EVENT, ESP_EVENT_ANY_ID, &event_handler, NULL) );
ESP_ERROR_CHECK( esp_wifi_set_mode(WIFI_MODE_STA) );
ESP_ERROR_CHECK( esp_wifi_start() );
}
static void smartconfig_task(void * parm)
{
EventBits_t uxBits;
ESP_ERROR_CHECK( esp_smartconfig_set_type(SC_TYPE_ESPTOUCH) );
smartconfig_start_config_t cfg = SMARTCONFIG_START_CONFIG_DEFAULT();
ESP_ERROR_CHECK( esp_smartconfig_start(&cfg) );
while (1) {
uxBits = xEventGroupWaitBits(s_wifi_event_group, CONNECTED_BIT | ESPTOUCH_DONE_BIT, true, false, portMAX_DELAY);
if(uxBits & CONNECTED_BIT) {
ESP_LOGI(TAG, "WiFi Connected to ap");
}
if(uxBits & ESPTOUCH_DONE_BIT) {
ESP_LOGI(TAG, "smartconfig over");
esp_smartconfig_stop();
vTaskDelete(NULL);
}
}
}
void app_main(void)
{
printf("Hello world!\n");
/* Print chip information */
esp_chip_info_t chip_info;
uint32_t flash_size;
esp_chip_info(&chip_info);
printf("This is %s chip with %d CPU core(s), %s%s%s%s, ",
CONFIG_IDF_TARGET,
chip_info.cores,
(chip_info.features & CHIP_FEATURE_WIFI_BGN) ? "WiFi/" : "",
(chip_info.features & CHIP_FEATURE_BT) ? "BT" : "",
(chip_info.features & CHIP_FEATURE_BLE) ? "BLE" : "",
(chip_info.features & CHIP_FEATURE_IEEE802154) ? ", 802.15.4 (Zigbee/Thread)" : "");
unsigned major_rev = chip_info.revision / 100;
unsigned minor_rev = chip_info.revision % 100;
printf("silicon revision v%d.%d, ", major_rev, minor_rev);
if(esp_flash_get_size(NULL, &flash_size) != ESP_OK) {
printf("Get flash size failed");
return;
}
printf("%" PRIu32 "MB %s flash\n", flash_size / (uint32_t)(1024 * 1024),
(chip_info.features & CHIP_FEATURE_EMB_FLASH) ? "embedded" : "external");
printf("Minimum free heap size: %" PRIu32 " bytes\n", esp_get_minimum_free_heap_size());
// Initialize NVS
esp_err_t ret = nvs_flash_init();
if (ret == ESP_ERR_NVS_NO_FREE_PAGES || ret == ESP_ERR_NVS_NEW_VERSION_FOUND) {
ESP_ERROR_CHECK(nvs_flash_erase());
ret = nvs_flash_init();
}
ESP_ERROR_CHECK( ret );
//init
initialise_wifi();
while(1) {
vTaskDelay(1000);
}
}
程序下载成功后,我们打开“EspTouch”软件,在此软件下点击 “EspTouch”选项,注意:手机必须连接 WiFi,才能一键配网,如下图所示。