当前位置: 首页 > news >正文

ai本地化 部署常用Ollama软件

现在用最简单的方式介绍一下 Ollama 的作用和用法:

Ollama 是什么?

Ollama 是一个让你能在自己电脑上免费运行大型语言模型(比如 Llama 3、Mistral 等)的工具。

相当于你本地电脑上有一个类似 ChatGPT 的 AI,但完全不用联网,所有数据都在自己电脑里处理,更安全、更私密。

它有什么用?

  1. 离线使用 AI:不联网也能和 AI 对话、生成文本、写代码等。

  2. 保护隐私:你的对话内容不会上传到服务器,适合处理敏感信息。

  3. 开发者友好:方便测试、调试 AI 模型,或集成到自己的项目中。

怎么用?(3步搞定)

1. 安装 Ollama
  • Mac/Linux:官网下载安装包,或终端直接运行:

curl -fsSL https://ollama.com/install.sh | sh

  • Windows(测试版):从官网下载安装包。Ollama主页:https://ollama.com/
    在这里插入图片描述
windows 环境配置
  • 关闭开机自启动(可选):
    Ollama 默认会随 Windows 自动启动,可以在「文件资源管理器」的地址栏中访问以下路径,删除其中的Ollama.lnk快捷方式文件,阻止它自动启动。
%APPDATA%\Microsoft\Windows\Start Menu\Programs\Startup

在这里插入图片描述

  • 配置环境变量(必须):
    Ollama 的默认模型存储路径如下:C:\Users%username%.ollama\models,无论 C 盘空间大小,需要安装多少模型,都建议换一个存放路径到其它盘,否则会影响电脑运行速度。

打开「系统环境变量」,新建一个系统变量OLLAMA_MODELS ,然后设置ollama模型的存储路径。

变量名:OLLAMA_MODELS

变量值(路径):D:\Work\ollama\models

  • 配置端口(可选):
    Ollama API 的默认访问地址和侦听端口是http://localhost:11434,只能在装有 Ollama 的系统中直接调用。如果要在网络中提供服务,请修改 API 的侦听地址和端口(在系统环境变量里设置):

变量名:OLLAMA_HOST

变量值(端口)::8000

只填写端口号可以同时侦听(所有) IPv4 和 IPv6 的:8000 端口。(变量值的端口前号前有个冒号:)

注:要使用 IPv6,需要 Ollama 0.0.20 或更高版本。另外,可能需要在 Windows 防火墙中开放相应端口的远程访问。

  • 允许浏览器跨域请求(可选):
    Ollama 默认只允许来自127.0.0.1和0.0.0.0的跨域请求,如果你计划在其它前端面板中调用 Ollama API,比如Open WebUI,建议放开跨域限制:

变量名:OLLAMA_ORIGINS

变量值:*

2. 下载模型

在终端输入命令下载模型(比如下载最流行的 Llama 3):

ollama run llama3  # 自动下载并运行

在这里插入图片描述

其他模型(如 mistralphi3gemma)同理,替换名字即可。
执行指令ollama run <模型名称>,首次执行会从模型库中下载模型,所需时间取决于你的网速和模型大小。模型库地址:https://ollama.org.cn/library

3. 开始对话

运行模型后,直接在终端输入问题,比如:

>>> 用一句话解释量子力学
>>> 写一个Python代码计算斐波那契数列

在这里插入图片描述

Ctrl+D 或输入 /bye 退出。

如果觉得直接在黑框里运行不优雅,可以将Ollama接入到成熟的UI系统中,比如Open WebUI,地址如下:
https://github.com/ollama/ollama?tab=readme-ov-file#community-integrations

常用命令

  • ollama list:查看已下载的模型

  • ollama run 模型名:运行指定模型

  • ollama pull 模型名:只下载不运行

  • ollama rm 模型名:删除模型

Usage:
  ollama [flags]
  ollama [command]

Available Commands:
  serve       启动 Ollama 服务
  create      从 Modelfile 创建一个模型
  show        查看模型详细信息
  run         运行一个模型
  stop        停止正在运行的模型
  pull        从注册表拉取一个模型
  push        将一个模型推送到注册表
  list        列出所有可用的模型
  ps          列出当前正在运行的模型
  cp          复制一个模型
  rm          删除一个模型
  help        获取关于任何命令的帮助信息

Flags:
  -h, --help      help for ollama
  -v, --version   Show version information

高级用法

  • 网页端对话:安装后访问 http://localhost:11434 使用网页界面。

  • API 调用:可以用代码通过接口调用本地模型(类似 OpenAI 的 API)。

  • 自定义模型:修改模型参数后,用 ollama create 创建自己的版本。

调用 Ollama 接口

Ollama 提供了丰富的 API 接口,供外部调用访问。详细的 接口文档 可以在官方 GitHub 中找到。

接口名称接口地址请求方法接口描述
Generate/api/generatePOST使用提供的模型为给定提示生成响应。
Chat/api/chatPOST使用提供的模型生成聊天中的下一条消息
Create/api/createPOST从 Modelfile 创建一个新的模型。
Tags/api/tagsGET列出本地可提供的型号。
Show/api/showPOST获取指定模型的详细信息。
Copy/api/copyPOST从现有模型创建副本。
Delete/api/deleteDELETE删除模型及其数据。
Pull/api/pullPOST从 Ollama 库中下载指定模型。
Push/api/pushPOST将模型上传到模型库。
Embed/api/embedPOST使用指定模型生成嵌入。
ListRunning/api/psPOST列出当前加载到内存中的模型。
Embeddings/api/embeddingsPOST生成嵌入(与 Embed 类似,但可能适用场景不同)。
Version/api/versionGET获取 Ollama 服务的版本号。

适合谁用?

  • 想本地体验 AI 的普通用户

  • 开发者测试 AI 功能

  • 学习 AI 技术的学生/研究者

  • 需要处理敏感数据的企业

总结:Ollama = 本地版 ChatGPT + 简单操作 + 完全免费 + 隐私保护,适合对 AI 感兴趣的所有人!

相关文章:

  • 【算法百题】专题六_模拟
  • 为什么需要强化学习?它解决了什么问题?
  • SwanLab邮件通知插件:训练完成收到邮件,掌握训练进度更及时
  • SQL Server性能优化实战
  • 人工智能实现电脑任务自动化的开源软件
  • 矩阵的逆的实际意义及牛顿法中的作用
  • debian11安装MongoDB
  • 【Agent】OpenManus-Flow-PlanningFlow设计分析
  • AI开发新纪元:MGX多智能体协作平台深度解析
  • 推理大模型的后训练增强技术-从系统1到系统2:大语言模型推理能力的综述
  • 牛客周赛85 DEF Java
  • 深度学习【迭代梯度下降法求解线性回归】
  • 在 macOS Sequoia 15.2 中启用「三指拖动」并实现快速复制的完整指南 ✨
  • 深度学习-简介
  • 学生选课管理系统数据库设计报告
  • Git下载安装(保姆教程)
  • torcharrow gflags版本问题
  • 动作捕捉手套如何让虚拟现实人机交互 “触手可及”?
  • 【入门初级篇】窗体的基本操作与功能介绍
  • 分布式唯一ID
  • 昆明阳宗海风景名胜区19口井违规抽取地热水,整改后用自来水代替温泉
  • 国家主席习近平抵达莫斯科
  • 潘功胜发布会答问五大要点:除了降准降息,这些政策“含金量”也很高
  • 央行:5月8日起,下调个人住房公积金贷款利率0.25个百分点
  • 预告:央行等部门将发声,介绍“一揽子金融政策支持稳市场稳预期”有关情况
  • 什么让翻拍“语文”成为短视频新风潮