当前位置: 首页 > news >正文

每日Attention学习28——Strip Pooling

模块出处

[CVPR 20] [link] Strip Pooling: Rethinking Spatial Pooling for Scene Parsing


模块名称

Strip Pooling (SP)


模块结构

在这里插入图片描述


模块特点
  • 本质是空间注意力的一种
  • 使用横/纵两个方向的条形池化获得一维方向上的重要程度,结合后便可以扩展至二维方向

模块代码
import torch
import torch.nn as nn
import torch.nn.functional as F


class SP(nn.Module):
    def __init__(self, in_channels, pool_size):
        super(SP, self).__init__()
        self.pool1 = nn.AdaptiveAvgPool2d(pool_size[0])
        self.pool2 = nn.AdaptiveAvgPool2d(pool_size[1])
        self.pool3 = nn.AdaptiveAvgPool2d((1, None))
        self.pool4 = nn.AdaptiveAvgPool2d((None, 1))
        inter_channels = int(in_channels/4)
        self.conv1_1 = nn.Sequential(nn.Conv2d(in_channels, inter_channels, 1, bias=False),
                                nn.BatchNorm2d(inter_channels),
                                nn.ReLU(True))
        self.conv1_2 = nn.Sequential(nn.Conv2d(in_channels, inter_channels, 1, bias=False),
                                nn.BatchNorm2d(inter_channels),
                                nn.ReLU(True))
        self.conv2_0 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, 3, 1, 1, bias=False),
                                nn.BatchNorm2d(inter_channels))
        self.conv2_1 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, 3, 1, 1, bias=False),
                                nn.BatchNorm2d(inter_channels))
        self.conv2_2 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, 3, 1, 1, bias=False),
                                nn.BatchNorm2d(inter_channels))
        self.conv2_3 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, (1, 3), 1, (0, 1), bias=False),
                                nn.BatchNorm2d(inter_channels))
        self.conv2_4 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, (3, 1), 1, (1, 0), bias=False),
                                nn.BatchNorm2d(inter_channels))
        self.conv2_5 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, 3, 1, 1, bias=False),
                                nn.BatchNorm2d(inter_channels),
                                nn.ReLU(True))
        self.conv2_6 = nn.Sequential(nn.Conv2d(inter_channels, inter_channels, 3, 1, 1, bias=False),
                                nn.BatchNorm2d(inter_channels),
                                nn.ReLU(True))
        self.conv3 = nn.Sequential(nn.Conv2d(inter_channels*2, in_channels, 1, bias=False),
                                nn.BatchNorm2d(in_channels))

    def forward(self, x):
        _, _, h, w = x.size()
        x1 = self.conv1_1(x)
        x2 = self.conv1_2(x)
        x2_1 = self.conv2_0(x1)
        x2_2 = F.interpolate(self.conv2_1(self.pool1(x1)), (h, w))
        x2_3 = F.interpolate(self.conv2_2(self.pool2(x1)), (h, w))
        x2_4 = F.interpolate(self.conv2_3(self.pool3(x2)), (h, w))
        x2_5 = F.interpolate(self.conv2_4(self.pool4(x2)), (h, w))
        x1 = self.conv2_5(F.relu_(x2_1 + x2_2 + x2_3))
        x2 = self.conv2_6(F.relu_(x2_5 + x2_4))
        out = self.conv3(torch.cat([x1, x2], dim=1))
        return F.relu_(x + out)
    

if __name__ == '__main__':
    x = torch.randn([1, 64, 44, 44])
    sp = SP(in_channels=64, pool_size=(8, 8))
    out = sp(x)
    print(out.shape) # [1, 64, 44, 44]

相关文章:

  • 【Golang】第二弹-----变量、基本数据类型、标识符
  • 上传本地项目到GitHub
  • 守护中国软件供应链安全,未名湖畔的筑梦人
  • Adobe Premiere Pro2023配置要求
  • 【Function】使用托管身份调用Function App触发器,以增强安全性
  • 深入解析 TensorFlow 兼容性问题及构建输出文件结构*
  • 操作系统八股文整理(一)
  • PyTorch 深度学习实战(11):强化学习与深度 Q 网络(DQN)
  • 【C++基础十】泛型编程(模板初阶)
  • Windows 环境图形化安装 Oracle 23ai
  • spring声明式事务原理02-调用第1层@Transactional方法-按需创建事务createTransactionIfNecessary
  • 深入解析“Off-the-Shelf”——从产品到AI模型的通用概念
  • 视觉定位项目中可以任意修改拍照点位吗?
  • ElementUI 表格中插入图片缩略图,鼠标悬停显示大图
  • 图像处理篇---图像预处理
  • 【宠粉赠书】极速探索 HarmonyOS NEXT:国产操作系统的未来之光
  • tongweb信创项目线上业务添堵问题排查
  • 《Python实战进阶》No21:数据存储:Redis 与 MongoDB 的使用场景
  • Spring面试:Spring,SpringMVC,SpringBoot
  • 软考系统架构师 — 1 考点分析
  • 网站接入服务器商查询/免费seo搜索优化
  • 网站建设 技术可行性/nba最新赛程
  • 柯桥建设局网站/优化大师官方免费下载
  • 洪山网站建设公司/广告竞价排名
  • 做h5小游戏的网站有哪些/5g网络优化工程师
  • 网站排名软件优化/正规seo一般多少钱