A* floyd算法 bellman-ford
求源点到目标点最短距离
排序的里面要加上与目标点一个预估距离,与dj算法差距只有这儿
预估要小于等于真实的最短距离,吸引力要适当
越接近实际距离越快
#include<bits/stdc++.h>
using namespace std;
// 方向向量:上、右、下、左
const vector<int> directions = {-1, 0, 1, 0, -1};
struct Node {
int x, y, cost;
bool operator>(const Node &other) const {
return cost > other.cost;
}
};
// Dijkstra 算法
int minDistance1(vector<vector<int>> &grid, int startX, int startY, int targetX, int targetY) {
if (grid[startX][startY] == 0 || grid[targetX][targetY] == 0) return -1;
int n = grid.size(), m = grid[0].size();
vector<vector<int>> distance(n, vector<int>(m, INT_MAX));
vector<vector<bool>> visited(n, vector<bool>(m, false));
priority_queue<Node, vector<Node>, greater<Node>> heap;
distance[startX][startY] = 1;
heap.push({startX, startY, 1});
while (!heap.empty()) {
Node cur = heap.top(); heap.pop();
int x = cur.x, y = cur.y;
if (visited[x][y]) continue;
visited[x][y] = true;
if (x == targetX && y == targetY) return distance[x][y];
for (int i = 0; i < 4; ++i) {
int nx = x + directions[i], ny = y + directions[i + 1];
if (nx >= 0 && nx < n && ny >= 0 && ny < m && grid[nx][ny] == 1 && !visited[nx][ny] && distance[x][y] + 1 < distance[nx][ny]) {
distance[nx][ny] = distance[x][y] + 1;
heap.push({nx, ny, distance[nx][ny]});
}
}
}
return -1;
}
// 曼哈顿距离
int heuristic(int x, int y, int targetX, int targetY) {
return abs(targetX - x) + abs(targetY - y);
}
// A* 算法
int minDistance2(vector<vector<int>> &grid, int startX, int startY, int targetX, int targetY) {
if (grid[startX][startY] == 0 || grid[targetX][targetY] == 0) return -1;
int n = grid.size(), m = grid[0].size();
vector<vector<int>> distance(n, vector<int>(m, INT_MAX));
vector<vector<bool>> visited(n, vector<bool>(m, false));
priority_queue<Node, vector<Node>, greater<Node>> heap;
distance[startX][startY] = 1;
heap.push({startX, startY, 1 + heuristic(startX, startY, targetX, targetY)});
while (!heap.empty()) {
Node cur = heap.top(); heap.pop();
int x = cur.x, y = cur.y;
if (visited[x][y]) continue;
visited[x][y] = true;
if (x == targetX && y == targetY) return distance[x][y];
for (int i = 0; i < 4; ++i) {
int nx = x + directions[i], ny = y + directions[i + 1];
if (nx >= 0 && nx < n && ny >= 0 && ny < m && grid[nx][ny] == 1 && !visited[nx][ny] && distance[x][y] + 1 < distance[nx][ny]) {
distance[nx][ny] = distance[x][y] + 1;
heap.push({nx, ny, distance[x][y] + 1 + heuristic(nx, ny, targetX, targetY)});
}
}
}
return -1;
}
// 生成随机地图
vector<vector<int>> randomGrid(int n) {
vector<vector<int>> grid(n, vector<int>(n, 1));
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if ((double)rand() / RAND_MAX < 0.3) {
grid[i][j] = 0; // 30% 概率为障碍
}
}
}
return grid;
}
int main() {
srand(time(0));
int len = 100, testTime = 10000;
cout << "功能测试开始" << endl;
for (int i = 0; i < testTime; ++i) {
int n = rand() % len + 2;
vector<vector<int>> grid = randomGrid(n);
int startX = rand() % n, startY = rand() % n;
int targetX = rand() % n, targetY = rand() % n;
int ans1 = minDistance1(grid, startX, startY, targetX, targetY);
int ans2 = minDistance2(grid, startX, startY, targetX, targetY);
if (ans1 != ans2) {
cout << "出错了!" << endl;
}
}
cout << "功能测试结束" << endl;
cout << "性能测试开始" << endl;
vector<vector<int>> grid = randomGrid(4000);
int startX = 0, startY = 0, targetX = 3900, targetY = 3900;
clock_t start, end;
start = clock();
int ans1 = minDistance1(grid, startX, startY, targetX, targetY);
end = clock();
cout << "运行 Dijkstra 算法结果: " << ans1 << ", 运行时间(毫秒): " << (end - start) * 1000.0 / CLOCKS_PER_SEC << endl;
start = clock();
int ans2 = minDistance2(grid, startX, startY, targetX, targetY);
end = clock();
cout << "运行 A* 算法结果: " << ans2 << ", 运行时间(毫秒): " << (end - start) * 1000.0 / CLOCKS_PER_SEC << endl;
cout << "性能测试结束" << endl;
return 0;
}
floyd任意两点最短,不能有负环,可以有负边,距离就会变成无穷负
中间点最先枚举跳板点,看能不能缩短距离
P2910 [USACO08OPEN] Clear And Present Danger S - 洛谷
#include <bits/stdc++.h>
using namespace std;
const int maxn=101;
const int maxm=10001;
int path[maxm];
int distance1[maxn][maxn];//点
int n,m,ans;
void floyd()
{
for(int bridge=1;bridge<=n;bridge++)
{
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
if(distance1[i][bridge]!=INT_MAX&&distance1[bridge][j]!=INT_MAX&&distance1[i][j]>distance1[i][bridge]+distance1[bridge][j])
distance1[i][j]=distance1[i][bridge]+distance1[bridge][j];
}
}
}
int main()
{
cin>>n>>m;
for(int i=0;i<m;i++)
cin>>path[i];
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
distance1[i][j]=INT_MAX;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
cin>>distance1[i][j];
floyd();
int ans=0;
for(int i=1;i<m;i++)
ans+=distance1[path[i-1]][path[i]];
cout<<ans;
}
bellman-ford可以解决单源最短路问题,比dj算法强在可以解决负边
787. K 站中转内最便宜的航班 - 力扣(LeetCode)
流程就是每次遍历每一条边,看看能不能缩小某两点距离,进行n-1轮操作后,一定可以松弛所有边的距离
class Solution {
public:
int findCheapestPrice(int n, vector<vector<int>>& flights, int src, int dst, int k) {
vector<int> cur(n,INT_MAX),nxt;
cur[src]=0;
//限制不超过k+1条边
for(int i=0;i<=k;i++)
{
nxt=cur;
for(auto a:flights)
{
if(cur[a[0]]!=INT_MAX)
nxt[a[1]]=min(nxt[a[1]],cur[a[0]]+a[2]);
}
cur=nxt;
}
return cur[dst]==INT_MAX?-1:cur[dst];
}
};
判断是否存在负环时候也可以用
SPFA优化
就是哪条点动过了就在下一轮优化
P3385 【模板】负环 - 洛谷
#include<bits/stdc++.h>
using namespace std;
const int maxn=2001;
const int maxm=6001;
int head[maxn],n,m;
int nxt[maxm];
int to[maxm];
int weight[maxm],cnt=1;
int distance1[maxn];
int updatecnt[maxn];//标记一个点被松弛次数
bool enter[maxn];
queue<int>q;
void addedge(int u,int v,int w)
{
nxt[cnt]=head[u];
to[cnt]=v;
weight[cnt]=w;
head[u]=cnt++;
}
bool spfa()
{
distance1[1]=0;
updatecnt[1]++;
q.push(1);
enter[1]=1;
while(!q.empty())
{
int u=q.front();
q.pop();
enter[u]=false;
for(int ei=head[u],v,w;ei>0;ei=nxt[ei])
{
v=to[ei];
w=weight[ei];
if(distance1[u]+w<distance1[v])
{
distance1[v]=distance1[u]+w;
if(!enter[v])
{
if(++updatecnt[v]>n-1)
return true;
q.push(v);
enter[v]=true;
}
}
}
}
return false;
}
int main()
{
int t;
cin>>t;
while(t--)
{
cin>>n>>m;
fill(distance1+1,distance1+n+1,INT_MAX);
while(!q.empty()) q.pop();
cnt=1;
memset(updatecnt,0,sizeof(updatecnt));
memset(enter,0,sizeof(enter));
memset(head,0,sizeof(head));
for(int i=1,u,v,w;i<=m;i++)
{
cin>>u>>v>>w;
if(w>=0)
{
addedge(u,v,w);
addedge(v,u,w);
}
else
addedge(u,v,w);
}
cout<<(spfa()?"YES":"NO")<<endl;
}
}
没有优化过的版本
#include<bits/stdc++.h>
using namespace std;
const int maxn=2001;
const int maxm=6001;
int head[maxn],n,m;
int nxt[maxm];
int to[maxm];
int weight[maxm],cnt=1;
int distance1[maxn];
void addedge(int u,int v,int w)
{
nxt[cnt]=head[u];
to[cnt]=v;
weight[cnt]=w;
head[u]=cnt++;
}
bool spfa()
{
distance1[1]=0;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
//遍历每一条边
for(int k=head[j];k>0;k=nxt[k])
{
if(distance1[j]!=INT_MAX&&distance1[to[k]]>distance1[j]+weight[k])
{
if(i==n)
return true;
distance1[to[k]]=distance1[j]+weight[k];
}
}
}
}
return false;
}
int main()
{
int t;
cin>>t;
while(t--)
{
cin>>n>>m;
fill(distance1+1,distance1+n+1,INT_MAX);
cnt=1;
memset(head,0,sizeof(head));
for(int i=1,u,v,w;i<=m;i++)
{
cin>>u>>v>>w;
if(w>=0)
{
addedge(u,v,w);
addedge(v,u,w);
}
else
addedge(u,v,w);
}
cout<<(spfa()?"YES":"NO")<<endl;
}
}