当前位置: 首页 > news >正文

RTDETR融合[CVPR2025]ARConv中的自适应矩阵卷积


RT-DETR使用教程: RT-DETR使用教程

RT-DETR改进汇总贴:RT-DETR更新汇总贴


《Adaptive Rectangular Convolution for Remote Sensing Pansharpening》

一、 模块介绍

        论文链接:https://arxiv.org/pdf/2503.00467

        代码链接:https://github.com/WangXueyang-uestc/ARConv

论文速览:

         基于卷积神经网络 (CNN) 的遥感全色锐化技术的最新进展显著提高了图像质量。然而,这些方法中的传统卷积模块有两个关键的缺点。首先,卷积运算中的采样位置被限制在一个固定的方形窗口内。其次,采样点的数量是预设的,保持不变。鉴于遥感图像中的物体大小不同,这些刚性参数会导致次优特征提取。为了克服这些限制,我们引入了一个创新的卷积模块,即自适应矩形卷积 (ARConv)。ARConv 自适应地学习卷积核的高度和宽度,并根据学习到的尺度动态调整采样点的数量。这种方法使 ARConv 能够有效地捕获图像中各种对象的比例特定特征,从而优化内核大小和采样位置。此外,我们还提出了 ARNet,这是一种以 ARConv 为主要卷积模块的网络架构。对多个数据集的广泛评估揭示了我们的方法在增强全色锐化性能方面优于以前的技术。消融研究和可视化进一步证实了 ARConv 的疗效。

总结:作者提出一种自适应矩阵卷积,一种卷积的变式。


二、二创融合模块

2.1 相关二创模块及所需参数

        该模块无二创模块。

2.2 更改yaml文件 (以自研模型加入为例)

yam文件解读:YOLO系列 “.yaml“文件解读_yolo yaml文件-CSDN博客

       打开更改ultralytics/cfg/models/rt-detr路径下的rtdetr-l.yaml文件,替换原有模块。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 512]
#  n: [ 0.33, 0.25, 1024 ]
#  s: [ 0.33, 0.50, 1024 ]
#  m: [ 0.67, 0.75, 768 ]
#  l: [ 1.00, 1.00, 512 ]
#  x: [ 1.00, 1.25, 512 ]
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐

backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  - [-1, 2, CCRI, [128, 5, True, False]]
  - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  - [-1, 1, ARConv, [256, 3]]
  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 4, CCRI, [512, 3, True, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 2, CCRI, [1024, 3, True, False]]

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 11, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [6, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 13 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 2, RepC4, [256]] # 15, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]] # 16, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [4, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 18 input_proj.0
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, RepC4, [256]] # X3 (20), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
  - [[-1, 16], 1, Concat, [1]] # cat Y4
  - [-1, 2, RepC4, [256]] # F4 (23), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 24, downsample_convs.1
  - [[-1, 11], 1, Concat, [1]] # cat Y5
  - [-1, 2, RepC4, [256]] # F5 (26), pan_blocks.1

  - [[20, 23, 26], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
# ⭐⭐Powered by https://blog.csdn.net/StopAndGoyyy,  技术指导QQ:2668825911⭐⭐

 2.2 修改train.py文件

       创建Train_RT脚本用于训练。

from ultralytics.models import RTDETR
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'

if __name__ == '__main__':
    model = RTDETR(model='ultralytics/cfg/models/rt-detr/rtdetr-l.yaml')
    # model.load('yolov8n.pt')
    model.train(data='./data.yaml', epochs=2, batch=1, device='0', imgsz=640, workers=2, cache=False,
                amp=True, mosaic=False, project='runs/train', name='exp')

         在train.py脚本中填入修改好的yaml路径,运行即可训。


相关文章:

  • .NET Framework华为云流水线发布
  • MKS HA-MFV:半导体制造中的高精度流量验证技术解析
  • 如何撰写一份清晰专业的软件功能测试报告
  • Next.js项目MindAI教程 - 第一章:环境准备与项目初始化
  • 硬件与软件的边界-从单片机到linux的问答详解
  • python速通小笔记-------1.容器
  • 全网第一提出:WIFI 透传串口模块都可以用于px4连接QGC上位机调试。
  • 论Linux进程间通信
  • Lora本地微调实战 --deepseek-r1蒸馏模型
  • 校园安全用电怎么保障?防触电装置来帮您
  • [C语言基础] 第1章 程序设计与C语言
  • ImGui 学习笔记(四)—— 实现每窗口背景色
  • DQN 玩 2048 实战|第一期!搭建游戏环境(附 PyGame 可视化源码)
  • 洛谷 P2801 教主的魔法 题解
  • Vulkan视频解码decode显示display之同步
  • 贪吃蛇小游戏-简单开发版
  • 【大模型基础_毛玉仁】2.4 基于 Encoder-Decoder 架构的大语言模型
  • AI芯片设计
  • Web3到底解决了什么问题?
  • Android 数据持久化之 SharedPreferences 存储
  • 证监会强化上市公司募资监管七要点:超募资金不得补流、还贷
  • 上海黄浦江挡潮闸工程建设指挥部成立,组成人员名单公布
  • 科技部等七部门:优先支持取得关键核心技术突破的科技型企业上市融资
  • 首次采用“顶置主星+侧挂从星”布局,长二丁“1箭12星”发射成功
  • 古巴外长谴责美国再次将古列为“反恐行动不合作国家”
  • 中国女足将于5月17日至6月2日赴美国集训并参加邀请赛