当前位置: 首页 > news >正文

考研数学复习之定积分定义求解数列极限(超详细教程)

        定积分定义求解数列极限是一种将数列极限问题转化为定积分问题进行求解的方法。这种方法通常适用于那些和式数列极限,其主要思路是将数列的项看作是某个函数在某一点或某一段区间上的取值或某种形式的和,然后利用定积分的性质和计算方法,来求解这类数列的极限。

定积分定义

    设函数y=f(x)在区间[a,b]上有界,在[a,b]中任意插入若干个分点                              

​​​ a=x_0<x_1<x2<...<x_{n-1}<x_{n}=b

把区间[a,b]分成n个小区间[x_0,x_1],[x_1,x_2]...[x_{n-1},x_n] 

那么各个小区间的长度为​​​​​​:​​​\bigtriangleup x1=x_1-x_0,\bigtriangleup x2=x_2-x_1...\bigtriangleup x_n=x_n-x_{n-1}

         接着,在每个小区间[x_{i-1},x_i]上任取一点\varepsilon_i,作函数值 f(\varepsilon_i)与小区间长度\bigtriangleup x_i的乘积         f(\varepsilon_i)\bigtriangleup x_i(i=1,2,…·,n),并作出和式S_n=\sum_{i=1}^{n}f(\varepsilon_i)\bigtriangleup x_i

        记\lambda=max \begin{Bmatrix}\bigtriangleup x_1,\bigtriangleup x_1,...\bigtriangleup x_n\end{Bmatrix},如果不论对区间[a,b]怎样划分,也不论在小区间[x_{i-1},x_i]上点\varepsilon怎样选取,只要当\lambda\rightarrow0时,和式S_n总趋于确定的极限I,那么称这个极限I为函数f(x)在区间[a,b]上的定积分,记作:

\lim_{\lambda\to0}S_n=\lim_{\lambda\to0}\sum_{i=1}^{n}f(\varepsilon_i)\bigtriangleup x_i=\int_{a}^{b}f(x)dx

\int_{a}^{b}f(x)dx

数列极限与定积分定义的转换

        对于定积分的定义,我们可以通过将区间进行特殊划分,进而把数列极限转化为定积分来计算。例如,将区间[a,b]进行等分,即\bigtriangleup x=\frac{b-a}{n}

        那么任意一个切分点x_i=a+i\bigtriangleup x,x_{i}等差数列,首项为a,末项为b,公差d=\bigtriangleup x根据前边定积分的定义,我们需要任取一点\varepsilon_i,这里不妨令他为x_i,那么我们便有:

  \lim_{n\to\infty}\frac{b-a}{n}\sum_{i=1}^{n}f(a+\frac{(b-a)i}{n})=\int_{a}^{b}f(x)dx(1)

 这样就把数列极限的计算转化为求一个函数在指定区间上的定积分了。

 注意:\lim_{n\to\infty}\frac{b-a}{n}\sum_{i=1}^{n}f(a+\frac{(i-m)(b-a)}{n})=\int_{a}^{b}f(x)dx (2)

        当0\leq m\leq 1 时(1)(2)两式是等价的,实际上(1)式完全可以看做(2)式m=0的情况,这里我建议大家重点记忆(2)式。

原因:

        

定积分定义的一些变型式

特别地,对于(1)式来说,还有一些常见的变型式:

\lim_{n\to\infty}\sum_{i=1}^{kn}f(a+\frac{(b-a)i}{kn})\frac{b-a}{kn}=\int_{a}^{b}f(x)dx,k\in N^{+}(3)

(3)式是最一般和通用的式子,我们务必要牢记。

当我们将(1)式中的f内部以及外部的k去掉后

\lim_{n\to\infty}\sum_{i=1}^{kn}f(a+\frac{(b-a)i}{n})\frac{b-a}{n}=\int_{ka}^{kb}f(x)dx(4)

(4)式的证明很简单,其实就是整体代换的思路,此时我们将k(b-a)看做整体:

\lim_{n\to\infty}\sum_{i=1}^{kn}f(a+\frac{k(b-a)i}{kn})\frac{k(b-a)}{kn}=\int_{ka}^{kb}f(x)dx

当k=1,a=0,b=1时,我们便得到了利用定积分定义求解数列极限中的‘常客’:  

\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}f(\frac{i}{n})=\int_{0}^{1}f(x)dx

转换方法

  1. 整理和式数列为\sum_{i=1}^{kn}的形式
  2. \sum_{i=1}^{kn}内部对数列通项整理(一般是同除或同乘n,n^{2},...n^{N},N\in N^{+})。
  3. 将所有含\frac{i}{n}的项看做x,\frac{i}{n}外嵌套数列通项公式看做函数法则,那么便得到了(3)式。
  4. 实际转换时我们只需要按照\frac{i}{n}为核心去化简整理即可。

例.\lim_{n\to\infty}\sum_{i=1}^{2n}\frac{ln(n^2+i^2)-2ln(n)}{n}

解:原式=\lim_{n\to\infty}\sum_{i=1}^{2n}\frac{ln(n^2+i^2)-ln(n^2)}{n}

       原式=\lim_{n\to\infty}\sum_{i=1}^{2n}\frac{ln(1+(\frac{i}{n})^2)}{n}

 求和是针对i的,\frac{1}{n}在求和符号内相当于常数

       原式=\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{2n}{ln(1+(\frac{i}{n})^2)}

   到这儿,我们便将这个数列极限整理成了非常完美的形式,并且还能一眼看出积分下限为0

被积函数为ln(1+x^2),接下来就是判断上限了……

 公式法判定上下限

          根据符合定积分定义的和式数列的通项判定积分上下限是一项必备技能,倘若你遇到类似题目,发现可以使用定积分定义来做,但是却迟迟找不出积分上下限,那么这就太可惜了。

\lim_{n\to\infty}\sum_{i=1}^{kn}f(a+\frac{(b-a)i}{kn})\frac{b-a}{kn}=\int_{a}^{b}f(x)dx

以下是我自己总结的一个方法: 

判定方法 

  1. 定位到数列通项中含\frac{i}{n}的一坨式子,如(3)式中的a+\frac{(b-a)i}{kn},这里我们设它为g(n,i),积分上下限分别为a,b,若g(n,i)中具有常数项,那么常数项为积分下限a,否则就是0。
  2. 令g(n,i)中的i分别为求和符号的上下限,一般而言是1和kn,那么a=\lim_{n\to\infty}g(n,1),b=\lim_{n\to\infty}g(n,kn),由此便确定了积分的上下限。
  3. 求和符号外含\frac{1}{n}的式子我们称他为步长,那么既然已经有了积分上下限,那么这个步长也就呼之欲出了,步长显然就是\frac{b-a}{kn}

例.\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{2n}{ln(1+(\frac{i}{n})^2)}

注意到g(n,i)为\frac{i}{n},求和符号上下限分别为1与2n

令i=1,\lim_{n\to\infty}g(n,1)=0;

令i=2n,\lim_{n\to\infty}g(n,2n)=2;

那么显而易见,该极限对应的定积分上下限分别为0,2步长为\frac{2-0}{2n}=\frac{1}{n}

      原极限=\int_{0}^{2}ln(1+x^2)dx

例题

        例子是最好的学习工具,丰富的例子远比枯燥的定义和公式更加让人有学习动力。

接下来,我们从易到难做几道例题,来巩固一下前边的知识点。


例1.(2021数二)设函数f(x)在[0,1]上连续,则\int_{0}^{1}f(x)dx=

       A.\lim_{n\to\infty}\sum_{k=1}^{n}f(\frac{2k}{2n})\frac{1}{2n} 

       B.\lim_{n\to\infty}\sum_{k=1}^{n}f(\frac{2k-1}{2n})\frac{1}{n}

       C.\lim_{n\to\infty}\sum_{k=1}^{n}f(\frac{k-1}{2n})\frac{1}{n}     

       D.\lim_{n\to\infty}\sum_{k=1}^{2n}f(\frac{k}{2n})\frac{2}{n}

解:本题使用我们刚刚讲解过的公式便可秒杀

  正确选项为B,但这里需要注意的是,对于B项

    我们还可以将其写作:

     \lim_{n\to\infty}\sum_{k=1}^{n}f(\frac{k-\frac{1}{2}}{n})\frac{1}{n}

    也就是先前我们谈到的(2)式,这里的常数\frac{1}{2}并不会影响整个积分结果,于是我们可以将其忽略

    那么剩下的便是\lim_{n\to\infty}\sum_{k=1}^{n}f(\frac{k}{n})\frac{1}{n}

     这是最经典的\int_{0}^{1}f(x)dx的定义。


例2.(2016数三)极限\lim_{n\to\infty}\frac{1}{n^2}(\sin(\frac{1}{n})+2\sin(\frac{2}{n})+...n\sin(\frac{n}{n})=

解:原式=\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}\frac{i}{n}\sin(\frac{i}{n})

根据判别方法,积分上下限为0,1

那么原式=\int_{0}^{1}xsinxdx=\sin(1)-\cos(1)


例3.极限\lim_{n\to\infty}\sqrt{n}(1-\sum_{i=1}^{n}\frac{1}{n+\sqrt{k}})(定积分定义+放缩)


总结

        

        以上便是使用定积分定义求解数列极限时所有的要点,看完这篇文章,我相信你又将掌握一个求极限的利器。

相关文章:

  • HTML5教程之标签(7)
  • Java关键字与标识符
  • 基于6自由度搬运机器人完成单关节伺服控制实现的详细步骤及示例代码
  • 基于YOLO11深度学习的遥感视角地面房屋建筑检测分割与分析系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标分割、人工智能
  • 【GNN】第四章:图卷积层GCN
  • Linux 服务器安全配置:密码复杂度与登录超时设置
  • 缓存id路由页面返回,历史路由栈
  • SpringBoot基础Kafka示例
  • 深度学习subword分词BPE
  • 在 DEM 中模拟粒子破损
  • 领域驱动设计(DDD)是什么?
  • 深度剖析Redis:双写一致性问题及解决方案全景解析
  • Vue3实战学习(Vue3集成Vue-Router(路由跳转、编程式路由跳转。路由跳转的单参数、多参数传递。设置默认页面路由))(上)(7)
  • 位运算的应用3(获取⼆进制中的指定位、leetcode 190.颠倒二进制位)
  • Word 小黑第15套
  • Linux_16进程地址空间
  • 音视频软件工程师面试题
  • JDK安装过程中误删path怎么办?
  • 开发、科研、日常办公工具汇总(自用,持续更新)
  • 一个基于LSTM的字符级文本生成模型的训练+使用(pytorch)
  • 国博馆刊|北朝至唐初夏州酋豪李氏家族的发展与身份记忆
  • 中美“第二阶段”贸易协定是否会在会谈中提出?商务部回应
  • 成都公积金新政征求意见:购买保障性住房最高贷款额度上浮50%
  • 特色业务多点开花,苏州银行擦亮金融为民底色
  • 金融监管总局:力争实现全国普惠型小微企业贷款增速不低于各项贷款增速
  • 暴雨蓝色预警:南方开启较强降雨过程