一、红黑树的实现以及迭代器
#pragma once
// 要实现完整的迭代器需要对红黑树进行改造,有兴趣可参考侯捷《STL源码剖析》
enum Colour
{
RED,
BLACK
};
template<class T>
struct RBTreeNode
{
RBTreeNode<T>* _left;
RBTreeNode<T>* _right;
RBTreeNode<T>* _parent;
T _data;
Colour _col;
RBTreeNode(const T& data)
:_left(nullptr)
, _right(nullptr)
, _parent(nullptr)
, _data(data)
, _col(RED)
{}
};
template<class T, class Ref, class Ptr>
struct RBTreeIterator
{
typedef RBTreeNode<T> Node;
typedef RBTreeIterator<T, Ref, Ptr> Self;
Node* _node;
RBTreeIterator(Node* node)
:_node(node)
{}
// 迭代器的++操作,让迭代器可以移动
// 左根右,当右没有访问完,就要继续访问
Self& operator++()
{
if (_node->_right)
{
// 下一个就是右子树的最左节点
Node* cur = _node->_right;
while (cur->_left)
{
cur = cur->_left;
}
_node = cur;
}
else
{
// 左子树 根 右子树
// 右为空,找孩子是父亲左的那个祖先
Node* cur = _node;
Node* parent = _node->_parent;
while (parent && cur == parent->_right)
{
cur = parent;
parent = cur->_parent;
}
_node = parent;
}
return *this;
}
self& operator--()
{
//如果左子树存在
if (_node->left)
{
//找左子树的最右节点
Node* right = _node->_left;
while (right->_right)
{
right = right->_right;
}
_node = rihgt;
}
//如果左子树不存在
else
{
//找孩子不是父亲左节点的节点
Node* parent = _node->parent;
Node* cur = _node;
while (parent->_left == cur)
{
cur = cur->_parent;
parent = parent->_parent;
if (parent == nullptr)
{
break;
}
}
_node = parent;
}
return *this;
}
// 下面两个操作,让迭代器可以像指针一样操作
T& operator*()
{
return _node->_data;
}
T* operator->()
{
return &_node->_data;
}
// 下面两个操作,让迭代器能够支持比较
bool operator!=(const Self& s)const
{
return _node != s._node;
}
bool operator==(const Self& s)const
{
return _node == s._node;
}
};
template<class K, class T, class KeyOfT>
class RBTree
{
typedef RBTreeNode<T> Node;
public:
typedef RBTreeIterator<T, T&, T*> Iterator;
typedef RBTreeIterator<T, const T&, const T*> const_Iterator;
Iterator Begin()
{
Node* cur = _root;
while (cur && cur->_left)
{
cur = cur->_left;
}
return Iterator(cur);
}
Iterator End()
{
return Iterator(nullptr);
}
const_Iterator Begin() const
{
Node* cur = _root;
while (cur->_left)
cur = cur->_left;
return const_Iterator(cur);
}
const_Iterator End() const
{
return const_Iterator(nullptr);
}
~RBTree()
{
Destroy(_root);
_root = nullptr;
}
pair<Node*, bool> Insert(const T& data)
{
if (_root == nullptr)
{
_root = new Node(data);
_root->_col = BLACK;
return make_pair(_root,true);
}
KeyOfT kot;
Node* parent = nullptr;
Node* cur = _root;
while (cur)
{
if (kot(cur->_data) < kot(data))
{
parent = cur;
cur = cur->_right;
}
else if (kot(cur->_data) > kot(data))
{
parent = cur;
cur = cur->_left;
}
else
{
return make_pair(cur, false);
}
}
cur = new Node(data);
Node* newnode = cur;
// 新增节点。颜色红色给红色
cur->_col = RED;
if (kot(parent->_data) < kot(data))
{
parent->_right = cur;
}
else
{
parent->_left = cur;
}
cur->_parent = parent;
while (parent && parent->_col == RED)
{
Node* grandfather = parent->_parent;
// g
// p u
if (parent == grandfather->_left)
{
Node* uncle = grandfather->_right;
if (uncle && uncle->_col == RED)
{
// u存在且为红 -》变色再继续往上处理
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
cur = grandfather;
parent = cur->_parent;
}
else
{
// u存在且为黑或不存在 -》旋转+变色
if (cur == parent->_left)
{
// g
// p u
//c
//单旋
RotateR(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
// g
// p u
// c
//双旋
RotateL(parent);
RotateR(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
else
{
// g
// u p
Node* uncle = grandfather->_left;
// 叔叔存在且为红,-》变色即可
if (uncle && uncle->_col == RED)
{
parent->_col = uncle->_col = BLACK;
grandfather->_col = RED;
// 继续往上处理
cur = grandfather;
parent = cur->_parent;
}
else // 叔叔不存在,或者存在且为黑
{
// 情况二:叔叔不存在或者存在且为黑
// 旋转+变色
// g
// u p
// c
if (cur == parent->_right)
{
RotateL(grandfather);
parent->_col = BLACK;
grandfather->_col = RED;
}
else
{
// g
// u p
// c
RotateR(parent);
RotateL(grandfather);
cur->_col = BLACK;
grandfather->_col = RED;
}
break;
}
}
}
_root->_col = BLACK;
return make_pair(newnode, true);
}
bool empty()const
{
if (_root == nullptr)
return true;
return false;
}
Node* Find(const K& key)
{
Node* cur = _root;
while (cur)
{
if (cur->_kv.first < key)
{
cur = cur->_right;
}
else if (cur->_kv.first > key)
{
cur = cur->_left;
}
else
{
return cur;
}
}
return nullptr;
}
size_t Size() const
{
return _Size(_root);
}
private:
size_t _Size(Node* root) const
{
if (root == nullptr)
return 0;
return _Size(root->_left)
+ _Size(root->_right) + 1;
}
void RotateL(Node* parent)
{
Node* subR = parent->_right;
Node* subRL = subR->_left;
parent->_right = subRL;
if (subRL)
subRL->_parent = parent;
Node* parentParent = parent->_parent;
subR->_left = parent;
parent->_parent = subR;
if (parentParent == nullptr)
{
_root = subR;
subR->_parent = nullptr;
}
else
{
if (parent == parentParent->_left)
{
parentParent->_left = subR;
}
else
{
parentParent->_right = subR;
}
subR->_parent = parentParent;
}
}
void RotateR(Node* parent)
{
Node* subL = parent->_left;
Node* subLR = subL->_right;
parent->_left = subLR;
if (subLR)
subLR->_parent = parent;
Node* parentParent = parent->_parent;
subL->_right = parent;
parent->_parent = subL;
if (parentParent == nullptr)
{
_root = subL;
subL->_parent = nullptr;
}
else
{
if (parent == parentParent->_left)
{
parentParent->_left = subL;
}
else
{
parentParent->_right = subL;
}
subL->_parent = parentParent;
}
}
void Destroy(Node* root)
{
if (root == nullptr)
return;
Destroy(root->_left);
Destroy(root->_right);
delete root;
}
private:
Node* _root = nullptr;
};
二、set
#pragma once
#include"RBTree_iterator.h"
namespace XY
{
template<class K>
class set
{
typedef K ValueType;
struct KeyOfValue
{
const K& operator()(const ValueType& data)
{
return data;
}
};
public:
// 这里加typename的原因是告诉编译器这是模板不是类型
// 还没实例化
typedef typename RBTree<ValueType, ValueType,KeyOfValue>::const_Iterator iterator;
typedef typename RBTree<ValueType, ValueType,KeyOfValue>::const_Iterator const_iterator;
iterator begin() const
{
return t.Begin();
}
iterator end() const
{
return t.End();
}
bool empty()const
{
return t.empty();
}
size_t size()const
{
return t.Size();
}
pair<iterator, bool> insert(const ValueType& data)
{
return t.Insert(data);
}
void clear()
{
t.Destroy();
}
iterator find(const K& key)
{
t.Find(key);
}
private:
RBTree<ValueType, ValueType, KeyOfValue> t;
};
}
三、map
#pragma once
#include"RBTree_iterator.h"
namespace XY
{
template<class K, class V>
class map
{
typedef pair<K, V> ValueType;
struct KeyOfValue
{
const K& operator()(const ValueType& data)
{
return data.first;
}
};
public:
// 这里加typename的原因是告诉编译器这是模板不是类型
// 还没实例化
typedef typename RBTree<ValueType, pair<const K, V>, KeyOfValue>::Iterator iterator;
typedef typename RBTree<ValueType, pair<const K, V>, KeyOfValue>::const_Iterator const_iterator;
iterator begin()
{
return t.Begin();
}
iterator end()
{
return t.End();
}
const_iterator cbegin() const
{
return t.Begin();
}
const_iterator cend() const
{
return t.End();
}
bool empty()const
{
return t.empty();
}
size_t size()const
{
return t.Size();
}
V& operator[](const K& key)
{
pair<iterator, bool> ret = insert(make_pair(key, V()));
return ret.first->second;
}
pair<iterator, bool> insert(const ValueType& data)
{
return t.Insert(data);
}
void clear()
{
t.Destroy();
}
iterator find(const K& key)
{
t.Find(key);
}
private:
RBTree<ValueType, pair<const K, V>, KeyOfValue> t;
};
}