当前位置: 首页 > news >正文

慕枫网站建设做网站电话销售的话术

慕枫网站建设,做网站电话销售的话术,网站站点建设分为,域名一个注册要多久深度学习优化技术教程 1. 低秩适配(LoRA - Low-Rank Adaptation) 1.1 概述 LoRA 是一种参数高效微调(PEFT)方法,通过引入低秩矩阵来适配大模型,而不改变原始权重矩阵,从而减少微调所需的计算…

深度学习优化技术教程

1. 低秩适配(LoRA - Low-Rank Adaptation)

1.1 概述

LoRA 是一种参数高效微调(PEFT)方法,通过引入低秩矩阵来适配大模型,而不改变原始权重矩阵,从而减少微调所需的计算量。

1.2 工作原理

在 LoRA 中,我们对模型的权重矩阵进行低秩分解,即:
Δ W = A × B ΔW = A \times B ΔW=A×B
其中:

  • A 维度为 d×r
  • B 维度为 r×k
  • r 远小于 d, k,因此优化的参数数量显著减少。

训练时,冻结原始权重矩阵 W,仅优化 A, B 两个矩阵。

1.3 适用场景

  • 大语言模型微调(如 LLaMA、GPT-4)
  • 低算力设备上的个性化 AI 适配
  • 任务迁移学习(如跨行业 AI 适配)

1.4 优势

  • 降低微调参数,减少 10~100 倍计算需求
  • 显存占用低,适合单 GPU 训练
  • 支持多个 LoRA 适配层并行训练

2. 参数高效微调(PEFT - Parameter-Efficient Fine-Tuning)

2.1 概述

PEFT 是一类微调方法的统称,包括 LoRA、Prefix-Tuning、Adapter-Tuning、BitFit 等,旨在减少 LLM 微调的计算开销。

2.2 适用场景

  • 多任务学习(不同任务共享基础模型,仅适配任务相关参数)
  • 个性化 AI(如个性化聊天助手)
  • 跨领域适配(法律、医学、金融等)

2.3 示例

  • BERT 上进行情感分析,仅微调 Adapter 层。
  • 使用 LoRA 适配 LLaMA-2 进行法律文档摘要。

3. 人类反馈强化学习(RLHF - Reinforcement Learning with Human Feedback)

3.1 概述

RLHF 结合强化学习和人类反馈,使 LLM 生成更加符合人类期望的答案。

3.2 工作流程

  1. 预训练模型(GPT、LLaMA)
  2. 监督微调(SFT) 让模型学习基础任务
  3. 训练奖励模型(RM) 通过人类反馈排序训练 R(response)R(\text{response})
  4. 强化学习优化 使用 PPO 算法优化生成答案

3.3 适用场景

  • ChatGPT、Claude、Gemini 优化对话质量
  • 代码生成 AI(Copilot) 提高代码质量
  • 法律、医疗 AI 让 AI 提供可靠建议

3.4 优势

  • 可控性更强,避免模型胡编
  • 提高回答质量,减少无意义回复

4. 多 GPU / TPU 并行训练

4.1 概述

现代 LLM 训练依赖多 GPU / TPU 进行并行计算,以处理大规模数据和模型。

4.2 常见并行方法

  1. 数据并行(Data Parallelism)
    • 每个 GPU 处理不同的 mini-batch,梯度平均后更新模型。
    • 示例:torch.nn.DataParallel
  2. 模型并行(Model Parallelism)
    • 不同 GPU 计算模型的不同部分(如 Transformer 层)。
    • 示例:GPT-3 训练时,拆分模型至多个 GPU。
  3. 流水线并行(Pipeline Parallelism)
    • 拆分模型计算流程,每个 GPU 负责不同计算阶段。
    • 示例:TPU 训练 BERT 时,每层部署在不同 TPU 核心。
  4. 张量并行(Tensor Parallelism)
    • 细粒度拆分矩阵计算,让多个 GPU 共享计算。
    • 示例:GPT-4 使用 Megatron-LM 进行张量并行。

4.3 适用场景

  • GPT-4 训练(1 万 GPU 分布式训练)
  • LLaMA-65B 推理(DeepSpeed ZeRO-3 让 8 张 A100 共同推理)

4.4 优势

  • 加速训练,减少训练时间
  • 突破显存限制,支持更大模型
  • 提高计算效率

5. 结论

方法主要作用适用场景主要优势
LoRA低秩微调,减少训练参数个人化 LLM、小型设备微调降低显存占用,适用于大模型
PEFT参数高效微调的统称任务迁移、多领域适配训练开销小,适用于多任务
RLHF让 AI 生成更符合人类期望的回答ChatGPT、Copilot让模型回答更准确
多 GPU 并行训练/推理超大规模模型GPT-4、LLaMA-65B让大模型可训练和部署

本教程介绍了 LoRA、PEFT、RLHF 以及多 GPU 并行训练的核心概念及应用场景。你可以根据自身需求选择合适的技术,如 LoRA 进行 LLM 微调,或 RLHF 训练对话 AI。

http://www.dtcms.com/a/578657.html

相关文章:

  • 免费网站制作多少钱西宁网站网站建设
  • 【AI应用探索】-8- OpenManus使用及源码解析
  • 网站建设与管理的条件常州建站程序
  • 【Hot100 | 2 LeetCode49 字母异位词分组问题】
  • 百度手机网址提交北京优化生育
  • 网站建设费分多少期摊销买电脑的怎么下wordpress
  • 网站商城网络整合营销购物类网站建设
  • 旅游公网站如何做购买域名网站好
  • 无线网络优化方案
  • 深圳宝安区网站建设公司网站域名空间多少钱
  • 比较两个excel文件的指定列是否一致
  • 建网站哪家好新闻wordpress 保持空格
  • 百度 网站 移动端邵阳网站开发公司推荐
  • 条款38:注意线程句柄析构函数的各种不同行为
  • 2027秋招备战day7
  • 嵌入式Linux C语言程序设计七
  • 学校让做网站做完怎么交全球最受欢迎的网站
  • 网站建设的报价单网络架构需求
  • 离心萃取机:破解磷酸萃取全流程痛点,筑牢高效生产核心
  • 测开学习DAY24
  • 【Java EE进阶 --- SpringBoot】统一功能处理
  • python--标准库os
  • 写网站建设需求株洲手机网站建设
  • 8图片这样的网站怎么做的新手这样开办公司
  • Springboot的家庭理财系统00sic864(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。
  • 从开发到合并:AICR 项目 Git 协作提交全流程指南
  • 濮阳做网站星月网络建设通网站会员免费吗
  • 公司网站域名的设计企业形象网站策划方案
  • 工信部公布网站备案拍照背景电子商务 做网站
  • 动态知识蒸馏(Dynamic KD)技术详解