当前位置: 首页 > news >正文

网站后台怎么上传文章企业网站建设遵循的原则

网站后台怎么上传文章,企业网站建设遵循的原则,wordpress 公网,网站源码怎样弄成网站注意力机制 心理学 动物需要在复杂的环境下有效关注值得注意的点 心理学框架:人类根据随意线索和不随意线索选择注意点 红色杯子:不随意线索(红色的杯子比较的显著,不需要额外的想法,自然而然会去看这个&#xff09…

注意力机制

心理学

动物需要在复杂的环境下有效关注值得注意的点
心理学框架:人类根据随意线索和不随意线索选择注意点
在这里插入图片描述
红色杯子:不随意线索(红色的杯子比较的显著,不需要额外的想法,自然而然会去看这个)
想读书:随意线索
想读书:随意线索

注意力机制

卷积、全连接、池化层都只考虑不随意线索
注意力机制则显示的考虑随意线索

  • 随意线索被称之为查询(query)
  • 每个输入是一个值(value)和不随意线索(key)的对
  • 通过注意力池化层来有偏向性的选择某些输入

在这里插入图片描述

非参注意力池化层

  • 给定数据 ( x i , y i ) , i = 1 , . . . , n (x_i, y_i), i = 1,...,n (xi,yi),i=1,...,n
  • 平均池化是最简单的方案: f ( x ) = 1 n ∑ i y i f(x) = \frac{1}{n} \sum_{i} y_i f(x)=n1iyi
  • 更好的方案是 60 年代提出来的 Nadaraya-Watson 核回归

f ( x ) = ∑ i = 1 n K ( x − x i ) ∑ j = 1 n K ( x − x j ) y i f(x) = \sum_{i=1}^{n} \frac{K(x - x_i)}{\sum_{j=1}^{n} K(x - x_j)} y_i f(x)=i=1nj=1nK(xxj)K(xxi)yi
在这里插入图片描述

Nadaraya-Watson核回归

  • 使用高斯核 K ( u ) = 1 2 π exp ⁡ ( − u 2 2 ) K(u) = \frac{1}{\sqrt{2\pi}} \exp(-\frac{u^2}{2}) K(u)=2π 1exp(2u2)
  • 那么 f ( x ) = ∑ i = 1 n exp ⁡ ( − 1 2 ( x − x i ) 2 ) ∑ j = 1 n exp ⁡ ( − 1 2 ( x − x j ) 2 ) y i f(x) = \sum_{i=1}^{n} \frac{\exp \left( -\frac{1}{2}(x - x_i)^2 \right)}{\sum_{j=1}^{n} \exp \left( -\frac{1}{2}(x - x_j)^2 \right)} y_i f(x)=i=1nj=1nexp(21(xxj)2)exp(21(xxi)2)yi
    = ∑ i = 1 n softmax ( − 1 2 ( x − x i ) 2 ) y i = \sum_{i=1}^{n} \text{softmax} \left( -\frac{1}{2}(x - x_i)^2 \right) y_i =i=1nsoftmax(21(xxi)2)yi

参数化的注意力机制

在之前基础上引入可以学习的 w w w
f ( x ) = ∑ i = 1 n softmax ( − 1 2 ( ( x − x i ) w ) 2 ) y i f(x) = \sum_{i=1}^{n} \text{softmax} \left( -\frac{1}{2}((x - x_i)w)^2 \right) y_i f(x)=i=1nsoftmax(21((xxi)w)2)yi

总结

  • 心理学认为人通过随意线索和不随意线索选择注意点
  • 注意力机制中,通过query(随意线索)和key(不随意线索)来有偏向性的选择输入
    • 可以一般的写作 f ( x ) = ∑ i α ( x , x i ) y i f(x) = \sum_{i} \alpha(x, x_i) y_i f(x)=iα(x,xi)yi,这里 α ( x , x i ) \alpha(x, x_i) α(x,xi) 是注意力权重
    • 早在60年代就有非参数的注意力机制
    • 下面介绍多个不同的权重设计

代码实现

注意力汇聚:Nadaraya - Watson 核回归

import torch
from torch import nn
from d2l import torch as d2l

生成数据集

n_train = 50  # 训练样本数
x_train, _ = torch.sort(torch.rand(n_train) * 5)   # 排序后的训练样本def f(x):return 2 * torch.sin(x) + x**0.8y_train = f(x_train) + torch.normal(0.0, 0.5, (n_train,))  # 训练样本的输出
x_test = torch.arange(0, 5, 0.1)  # 测试样本
y_truth = f(x_test)  # 测试样本的真实输出
n_test = len(x_test)  # 测试样本数
n_test

可视化看一下

def plot_kernel_reg(y_hat):d2l.plot(x_test, [y_truth, y_hat], 'x', 'y', legend=['Truth', 'Pred'],xlim=[0, 5], ylim=[-1, 5])d2l.plt.plot(x_train, y_train, 'o', alpha=0.5);y_hat = torch.repeat_interleave(y_train.mean(), n_test)
plot_kernel_reg(y_hat)

在这里插入图片描述
非参数注意力汇聚

# X_repeat的形状:(n_test,n_train),
# 每一行都包含着相同的测试输入(例如:同样的查询)
X_repeat = x_test.repeat_interleave(n_train).reshape((-1, n_train))
# x_train包含着键。attention_weights的形状:(n_test,n_train),
# 每一行都包含着要在给定的每个查询的值(y_train)之间分配的注意力权重
attention_weights = nn.functional.softmax(-(X_repeat - x_train)**2 / 2, dim=1)
# y_hat的每个元素都是值的加权平均值,其中的权重是注意力权重
y_hat = torch.matmul(attention_weights, y_train)
plot_kernel_reg(y_hat)

在这里插入图片描述
注意力权重

d2l.show_heatmaps(attention_weights.unsqueeze(0).unsqueeze(0),xlabel='Sorted training inputs',ylabel='Sorted testing inputs')

在这里插入图片描述
带参数注意力汇聚 假定两个张量的形状分别是 ( n , a , b ) (n,a,b) (n,a,b) ( n , b , c ) (n,b,c) (n,b,c),它们的批量矩阵乘法输出的形状为 ( n , a , c ) (n,a,c) (n,a,c)

X = torch.ones((2, 1, 4))
Y = torch.ones((2, 4, 6))
torch.bmm(X, Y).shape# torch.Size([2, 1, 6])

带参数的注意力汇聚

class NWKernelRegression(nn.Module):def __init__(self, **kwargs):super().__init__(**kwargs)self.w = nn.Parameter(torch.rand((1,), requires_grad=True))def forward(self, queries, keys, values):# queries和attention_weights的形状为(查询个数,“键-值”对个数)queries = queries.repeat_interleave(keys.shape[1]).reshape((-1, keys.shape[1]))self.attention_weights = nn.functional.softmax(-((queries - keys) * self.w)**2 / 2, dim=1)# values的形状为(查询个数,“键-值”对个数)return torch.bmm(self.attention_weights.unsqueeze(1),values.unsqueeze(-1)).reshape(-1)

将训练数据集转换为键和值

# X_tile的形状:(n_train,n_train),每一行都包含着相同的训练输入
X_tile = x_train.repeat((n_train, 1))
# Y_tile的形状:(n_train,n_train),每一行都包含着相同的训练输出
Y_tile = y_train.repeat((n_train, 1))
# keys的形状:('n_train','n_train'-1)
keys = X_tile[(1 - torch.eye(n_train)).type(torch.bool)].reshape((n_train, -1))
# values的形状:('n_train','n_train'-1)
values = Y_tile[(1 - torch.eye(n_train)).type(torch.bool)].reshape((n_train, -1))

训练带参数的注意力汇聚模型

net = NWKernelRegression()
loss = nn.MSELoss(reduction='none')
trainer = torch.optim.SGD(net.parameters(), lr=0.5)
animator = d2l.Animator(xlabel='epoch', ylabel='loss', xlim=[1, 5])for epoch in range(5):trainer.zero_grad()l = loss(net(x_train, keys, values), y_train)l.sum().backward()trainer.step()print(f'epoch {epoch + 1}, loss {float(l.sum()):.6f}')animator.add(epoch + 1, float(l.sum()))

在这里插入图片描述
预测结果绘制

# keys的形状:(n_test,n_train),每一行包含着相同的训练输入(例如,相同的键)
keys = x_train.repeat((n_test, 1))
# value的形状:(n_test,n_train)
values = y_train.repeat((n_test, 1))
y_hat = net(x_test, keys, values).unsqueeze(1).detach()
plot_kernel_reg(y_hat)

在这里插入图片描述
曲线在注意力权重较大的区域变得更不平滑

d2l.show_heatmaps(net.attention_weights.unsqueeze(0).unsqueeze(0),xlabel='Sorted training inputs',ylabel='Sorted testing inputs')

在这里插入图片描述

小结

  • Nadaraya-Watson核回归是具有注意力机制的机器学习范例。
  • Nadaraya-Watson核回归的注意力汇聚是对训练数据中输出的加权平均。从注意力的角度来看,分配给每个值的注意力权重取决于将值所对应的键和查询作为输入的函数。
  • 注意力汇聚可以分为非参数型和带参数型。
http://www.dtcms.com/a/530897.html

相关文章:

  • 环保网站建设项目备案系统网站建设售后回访话术
  • 做网站的需要注册商标吗合肥网络科技有限公司做网站
  • 陶瓷行业网站建设招标书上饶营销网站建设
  • 以下不属于网站建设优化山东天齐建设集团网站
  • 哈尔滨造价信息网官网seo外包方案
  • 赤水网站建设网站页面优化分析
  • 有哪些h5做的网站wordpress所有分类
  • 写代码建商城网站时间建筑模板的规格
  • 郑州网站seo诊断网站建设文章
  • 网站被k长沙seo关键词排名
  • 电脑编程与网站建设免费logo设计一键生成无水印图片
  • 如何做网站免费重庆网站建设网领科技
  • 简单大气的企业网站错题网站开发
  • 珠海 网站开发怎么查自己是不是备案人员
  • 儋州网站建设培训学校广告设计在线
  • 创建网站需要备案吗文本文档做网站怎么加图片
  • 西安seo代运营佛山网络推广seo
  • 商城网站模板源码网站备案更改需要多久
  • php在网站上怎么做充值做外汇查哪个网站
  • h5技术的网站网站建设的主要技术路线
  • 自建网站系统深圳校园网站建设
  • 网站没排名的原因品牌策划的流程
  • 北京做视觉网站南通建设网站哪家好
  • 购物车网站建设网页美工设计简单流程
  • 简单html网站网页设计图片链接跳转代码
  • 网站如何留言苏州seo关键词优化外包
  • 做公司网站写什么信息福州网站制作好的企业
  • 辽宁建设工程招标网站wordpress 4.7.3 id
  • 邢台建设一个企业网站自己的网站发文章怎么做外链
  • 爱站关键词挖掘用什么做网站开发