当前位置: 首页 > news >正文

辽源网站建设设计wordpress占有率

辽源网站建设设计,wordpress占有率,网站做百度推广需要什么材料,增加wordpress阅读量摘要(Abstract) 牛顿-拉夫逊优化算法(Newton-Raphson-Based Optimizer, NRBO)是一种新型群体智能优化算法,受牛顿-拉夫逊方法求解非线性方程的启发。NRBO 结合牛顿-拉夫逊搜索规则(Newton-Raphson Search …

摘要(Abstract)

牛顿-拉夫逊优化算法(Newton-Raphson-Based Optimizer, NRBO)是一种新型群体智能优化算法,受牛顿-拉夫逊方法求解非线性方程的启发。NRBO 结合牛顿-拉夫逊搜索规则(Newton-Raphson Search Rule, NRSR)陷阱规避算子(Trap Avoidance Operator, TAO),能够在全局搜索和局部开发之间取得良好的平衡,提高算法的收敛速度和优化能力。NRBO 通过随机扰动和梯度信息调整搜索方向,从而提升寻优效率,并有效避免局部最优陷阱。实验表明,NRBO 在求解连续优化问题时表现出较高的搜索精度和收敛稳定性。

算法介绍

NRBO 采用牛顿-拉夫逊方法的迭代思想,在传统优化算法的基础上进行改进,主要特点如下:

  1. 牛顿-拉夫逊搜索规则(NRSR):
    • 该规则用于计算个体更新方向,通过牛顿-拉夫逊方法的数值迭代公式调整搜索步长,使个体能够向最优解逼近。
  2. 动态参数 delta:
    • 随着迭代次数增加,delta 逐渐减小,从而增强算法的稳定性,防止过早收敛。
  3. 陷阱规避算子(Trap Avoidance Operator, TAO):
    • 通过随机扰动调整个体位置,增加搜索的多样性,防止个体陷入局部最优。
  4. 自适应搜索策略:
    • 结合不同的搜索模式(全局探索、局部开发),在不同阶段使用不同策略,提高寻优效率。

详细代码

下面是 NRBO 算法的完整 MATLAB 代码:

% -----------------------------------------------------------------------------------------
% Newton-Raphson-Based Optimizer (NRBO) 牛顿-拉夫逊优化算法
% 
% 参考论文:
% Newton-Raphson-Based Optimizer: A New Population-Based Metaheuristic Algorithm for Continuous Optimization Problems
% Engineering Applications of Artificial Intelligence, 2024
% DOI: https://doi.org/10.1016/j.engappai.2023.107532
% 
% 作者:Dr. Sowmya R, Dr. M. Premkumar, Dr. Pradeep Jangir
% -----------------------------------------------------------------------------------------function [Best_Score, Best_Pos, CG_curve] = NRBO(N, MaxIt, LB, UB, dim, fobj)% 参数说明:% N     - 种群个体数(粒子数量)% MaxIt - 最大迭代次数% LB    - 搜索空间的下界% UB    - 搜索空间的上界% dim   - 变量维度% fobj  - 目标函数(适应度函数)% 陷阱规避算子(TAO)的触发概率DF = 0.6;% 设定搜索边界LB = ones(1, dim) * LB;           UB = ones(1, dim) * UB;% 初始化种群Position = initialization(N, dim, UB, LB);Fitness = zeros(N, 1); % 记录个体的适应度值% 计算初始种群的适应度值for i = 1:NFitness(i) = fobj(Position(i,:));      end% 记录当前最优和最劣个体[~, Ind] = sort(Fitness);     Best_Score = Fitness(Ind(1));Best_Pos = Position(Ind(1),:);Worst_Cost = Fitness(Ind(end));Worst_Pos = Position(Ind(end),:);% 初始化收敛曲线CG_curve = zeros(1, MaxIt);% ----------------- 主要优化循环 -----------------for it = 1:MaxIt% 计算动态参数 delta,随着迭代次数增加而减小delta = (1 - ((2 * it) / MaxIt)) .^ 5;% 遍历种群中的每个个体for i = 1:N                % 随机选择两个不同的个体索引P1 = randperm(N, 2);                                       a1 = P1(1); a2 = P1(2);% 计算步长 rhorho = rand * (Best_Pos - Position(i,:)) + rand * (Position(a1,:) - Position(a2,:));% 计算牛顿-拉夫逊搜索规则(NRSR)Flag = 1;                   NRSR = SearchRule(Best_Pos, Worst_Pos, Position(i,:), rho, Flag);      X1 = Position(i,:) - NRSR + rho;                                  X2 = Best_Pos - NRSR + rho;                                            % 更新个体位置Xupdate = zeros(1, dim);for j = 1:dim                                                                       X3 = Position(i,j) - delta * (X2(j) - X1(j));           a1 = rand; a2 = rand;Xupdate(j) = a1 * (a1 * X1(j) + (1 - a2) * X2(j)) + (1 - a2) * X3;             end% 陷阱规避算子(TAO)防止个体陷入局部最优if rand < DFtheta1 = -1 + 2 * rand(); theta2 = -0.5 + rand();      beta = rand < 0.5;u1 = beta * 3 * rand + (1 - beta); u2 = beta * rand + (1 - beta);          if u1 < 0.5X_TAO = Xupdate +  theta1 * (u1 * Best_Pos - u2 * Position(i,:)) + theta2 * delta * (u1 * mean(Position) - u2 * Position(i,:));elseX_TAO = Best_Pos + theta1 * (u1 * Best_Pos - u2 * Position(i,:)) + theta2 * delta * (u1 * mean(Position) - u2 * Position(i,:));  endXnew = X_TAO;elseXnew = Xupdate;end% 边界检查,防止越界Xnew = min(max(Xnew, LB), UB);% 计算新个体的适应度值Xnew_Cost = fobj(Xnew);% 更新最优个体if Xnew_Cost < Fitness(i)Position(i,:) = Xnew;Fitness(i) = Xnew_Cost;if Fitness(i) < Best_ScoreBest_Pos = Position(i,:);Best_Score = Fitness(i);endend% 更新最劣个体if Fitness(i) > Worst_CostWorst_Pos = Position(i,:);Worst_Cost = Fitness(i);endend% 记录当前迭代的最优适应度值CG_curve(it) = Best_Score;% 显示当前迭代信息disp(['Iteration ' num2str(it) ': Best Fitness = ' num2str(CG_curve(it))]);end
end

总结

  • NRBO 结合了牛顿-拉夫逊方法的数值迭代策略,提高了寻优效率。
  • 动态参数 delta 使得算法在早期阶段注重全局探索,后期增强局部开发能力。
  • 陷阱规避算子(TAO)能够有效避免局部最优陷阱,提高全局搜索能力。
  • 适用于求解高维、复杂的连续优化问题。
http://www.dtcms.com/a/481494.html

相关文章:

  • 分销网站建站运营团队架构
  • 财经大学网站建设莱芜金点子信息港租房信息
  • 网站制作公司浩森宇特多少个网站
  • 长春网长春关键词排名站设计网站备案分为几种
  • 沈阳网站建设价格品牌设计 品牌标志设计
  • 营销渠道模式有哪些南京网站优化建站
  • 可遇公寓网站哪个公司做的免费网上商城模板
  • 手机网站分类菜单宁波网站制作工作室
  • 做设计一般用的素材网站是什么意思中山建设网站公司
  • 电商 网站 降低 跳出率 措施 效果企业设计网站推荐
  • 南通企业自助建站系统制作网站哪家强
  • 瀑布式网站长沙房价2020最新价格
  • 如何做一款服装网站中铁建设集团招聘官网
  • 做物流的网站有哪些网页设计基础括号代码大全
  • 要是360网站不安全怎么做ps个人主页设计模板
  • 手机网站js特效私募股权基金网站建设
  • 北京市建设局网站首页重庆网站改版
  • 上海专业网站建设价格深圳网站建设推广方案
  • 网站变灰江苏省建设局官方网站查询
  • 上海大学生兼职做网站哪个网站做外贸假发好
  • 网站友链怎么做wordpress需要会php
  • 购物网站产品做促销能赚钱吗做网站打广告犯法吗
  • 阳江市做网站的公司有没学做早餐的网站
  • 做一个英文网站百度竞价官网
  • 台州建设监理协会网站做资源网站
  • 浙江省建设执业资格中心网站深圳网站建设找哪家公司
  • wordpress菜单底部导航三明seo
  • 火星建站和八亿建站在wordpress中图标
  • 东莞网站建设 信科网络境外公司注册
  • 深圳微商城网站设计费用服务网站策划书