当前位置: 首页 > news >正文

有没有哪种网站推荐一下wordpress google ad

有没有哪种网站推荐一下,wordpress google ad,什么叫网站空间,wordpress文章名引言 最近MCP大火,本文尝试揭开它神秘的面纱。文章较长,分为上下两篇。这是第二篇。 MCP实战 MCP有通过高级API和底层API实现两种方法,我们先来看下底层API如何实现。 底层 API实现 服务器端: server.py: import anyio # …

引言

最近MCP大火,本文尝试揭开它神秘的面纱。文章较长,分为上下两篇。这是第二篇。

MCP实战

MCP有通过高级API和底层API实现两种方法,我们先来看下底层API如何实现。

底层 API实现

服务器端:

server.py:

import anyio  # AnyIO is an asynchronous networking and concurrency library that works on top of either asyncio or trio.
import click  # Click is a Python package for creating beautiful command line interfaces in a composable way with as little code as necessary.
import httpx
import mcp.types as types
from mcp.server.lowlevel import Serverfrom datetime import datetime
from tavily import TavilyClient
import os
import jsonfrom dotenv import load_dotenvload_dotenv()tavily_client = TavilyClient(api_key=os.getenv("TAVILY_API_KEY"))def get_now() -> list[types.TextContent]:return_str = datetime.now().strftime("%Y-%m-%d %H:%M:%S")return [types.TextContent(type="text", text=return_str)]def web_search(query: str) -> list[types.TextContent]:response = tavily_client.search(query)results = response.get("results")return [types.TextContent(type="text", text=result.get("content")) for result in results]@click.command()
@click.option("--port", default=8000, help="Port to listen on for SSE")
@click.option("--transport",type=click.Choice(["stdio", "sse"]),default="stdio",help="Transport type",
)
def main(port: int, transport: str) -> int:app = Server("mcp-test-server")@app.call_tool()async def fetch_tool(name: str, arguments: dict) -> list[types.TextContent]:if name == "get_now":return get_now()elif name == "web_search":return web_search(arguments["query"])else:raise ValueError(f"Unkonw tool: {name}")@app.list_tools()async def list_tools() -> list[types.Tool]:return [types.Tool(name="web_search",description="进行谷歌搜索,可以查询最近发生的实事、天气等",inputSchema={"type": "object","required": ["query"],"properties": {"query": {"type": "string","description": "要进行互联网搜索的查询",}},},),types.Tool(name="get_now",description="获取当前时间",inputSchema={},),]if transport == "sse":from mcp.server.sse import SseServerTransportfrom starlette.applications import (Starlette,)  # Starlette is a lightweight ASGI framework/toolkit, which is ideal for building async web services in Python.from starlette.routing import Mount, Routesse = SseServerTransport("/messages/")async def handle_sse(request):async with sse.connect_sse(request.scope, request.receive, request._send) as streams:await app.run(streams[0], streams[1], app.create_initialization_options())starlette_app = Starlette(debug=True,routes=[Route("/sse", endpoint=handle_sse),Mount("/messages/", app=sse.handle_post_message),],)import uvicornuvicorn.run(starlette_app, host="0.0.0.0", port=port)else:from mcp.server.stdio import stdio_serverasync def arun():async with stdio_server() as streams:await app.run(streams[0], streams[1], app.create_initialization_options())anyio.run(arun)return 0if __name__ == "__main__":import syssys.exit(main())# python -m server --transport sse

服务器端支持sse和stdio,如果以sse启动: python -m server --transport sse

客户端:

client.py:

import asyncio
import json
import os
import sys
import logging
from typing import Optional
from contextlib import AsyncExitStack
from mcp import ClientSession
from mcp.client.sse import sse_client
from openai import AsyncOpenAI
from dotenv import load_dotenvload_dotenv()# 配置日志系统
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)class MCPChatClient:def __init__(self):self.session: Optional[ClientSession] = Noneself.exit_stack = AsyncExitStack()# 初始化 OpenAI 客户端self.openai = AsyncOpenAI(api_key=os.getenv("OPENAI_API_KEY"),base_url=os.getenv("OPENAI_BASE_URL"),)async def __aenter__(self):await self.exit_stack.__aenter__()return selfasync def __aexit__(self, exc_type, exc_val, exc_tb):await self.exit_stack.__aexit__(exc_type, exc_val, exc_tb)async def connect(self, server_url: str):logger.info(f"Connecting to SSE server at {server_url}...")# 连接 SSE 服务端并创建 MCP 会话streams = await self.exit_stack.enter_async_context(sse_client(url=server_url))self.session = await self.exit_stack.enter_async_context(ClientSession(*streams))await self.session.initialize()# 获取并打印可用工具列表response = await self.session.list_tools()tools = response.toolslogger.info(f"Connected to server with tools: {[tool.name for tool in tools]}")async def handle_query(self, user_input: str) -> str:messages = [{"role": "user", "content": user_input}]response = await self.session.list_tools()# 将 MCP 工具列表格式化为 OpenAI function calling 格式tools_payload = [{"type": "function","function": {"name": tool.name,"description": tool.description,"parameters": tool.inputSchema,},}for tool in response.tools]logger.debug(f"Available tools: {json.dumps(tools_payload, indent=2)}")# 首次调用 OpenAI Chat Completionchat_response = await self.openai.chat.completions.create(model=os.getenv("OPENAI_MODEL"),max_tokens=1000,messages=messages,tools=tools_payload,)output_texts = []assistant_msg = chat_response.choices[0].message# 检查是否触发了工具调用if assistant_msg.tool_calls:for tool_call in assistant_msg.tool_calls:tool_name = tool_call.function.nametool_args = json.loads(tool_call.function.arguments)try:# 执行工具调用result = await self.session.call_tool(tool_name, tool_args)output_texts.append(f"[Called {tool_name} with args {tool_args}]")# 将工具调用响应添加到对话中messages.extend([{"role": "assistant","content": None,"tool_calls": [tool_call],},{"role": "tool","tool_call_id": tool_call.id,"content": result.content[0].text,},])logger.info(f"Tool {tool_name} returned: {result.content[0].text}")# 根据工具响应再次请求 OpenAI,继续对话chat_response = await self.openai.chat.completions.create(model=os.getenv("OPENAI_MODEL"),max_tokens=1000,messages=messages,)content = chat_response.choices[0].message.contentoutput_texts.append(str(content))except Exception as e:logger.exception(f"Error calling tool {tool_name} with args {tool_args}.")else:# 没有工具调用,直接返回 Assistant 的响应content = assistant_msg.contentoutput_texts.append(str(content))return "\n".join(output_texts)async def interactive_chat(self):print("\nMCP Chat Client Started!")print("Type your queries or 'q' to exit.")while True:try:query = input("\nQuery: ").strip()if query.lower() == "q":breakresponse = await self.handle_query(query)print("\n" + response)except Exception as e:logger.exception("Unexpected error during chat interaction.")async def main():if len(sys.argv) < 2:print("Usage: python -m client <SSE MCP server URL>")sys.exit(1)try:async with MCPChatClient() as client:await client.connect(server_url=sys.argv[1])await client.interactive_chat()except Exception:logger.exception("Failed to start MCPChatClient.")if __name__ == "__main__":asyncio.run(main())

假设服务器以sse启动,通过python -m client http://localhost:8000/sse启动客户端。这里示例了通过OpenAI协议中的函数调用方式来实现MCP的工具调用,实际上还可通过ReACT等方式。

fastmcp实现

MCP的sdk提供了高级API实现,可以快速编写服务器:

fast_server.py:

from mcp.server.fastmcp import FastMCPfrom datetime import datetime
from tavily import TavilyClient
import osfrom dotenv import load_dotenvload_dotenv()tavily_client = TavilyClient(api_key=os.getenv("TAVILY_API_KEY"))mcp = FastMCP("test-demo", port="8088")@mcp.tool()
def get_now() -> str:"""获取当前时间Returns:str: %Y-%m-%d %H:%M:%S 格式的时间"""return datetime.now().strftime("%Y-%m-%d %H:%M:%S")@mcp.tool()
def web_search(query: str) -> list[str]:"""进行谷歌搜索,可以查询最近发生的实事、天气等Args:query (str): 要进行互联网搜索的查询Returns:list[str]: 查询结果列表"""response = tavily_client.search(query)results = response.get("results")return [result.get("content") for result in results]if __name__ == "__main__":# Initialize and run the servermcp.run(transport="sse")

可以看到这里我们主要关心的就是如何定义好工具。

首先通过python fast_server.py启动服务端,然后通过python -m client http://localhost:8088/sse启动客户端。

客户端日志:

> python -m client http://localhost:8088/sse
INFO:__main__:Connecting to SSE server at http://localhost:8088/sse...
INFO:mcp.client.sse:Connecting to SSE endpoint: http://localhost:8088/sse
INFO:httpx:HTTP Request: GET http://localhost:8088/sse "HTTP/1.1 200 OK"
INFO:mcp.client.sse:Received endpoint URL: http://localhost:8088/messages/?session_id=6f7720204b1b4e6ab53ccd65d7a4c3a7
INFO:mcp.client.sse:Starting post writer with endpoint URL: http://localhost:8088/messages/?session_id=6f7720204b1b4e6ab53ccd65d7a4c3a7
INFO:httpx:HTTP Request: POST http://localhost:8088/messages/?session_id=6f7720204b1b4e6ab53ccd65d7a4c3a7 "HTTP/1.1 202 Accepted"
INFO:httpx:HTTP Request: POST http://localhost:8088/messages/?session_id=6f7720204b1b4e6ab53ccd65d7a4c3a7 "HTTP/1.1 202 Accepted"
INFO:httpx:HTTP Request: POST http://localhost:8088/messages/?session_id=6f7720204b1b4e6ab53ccd65d7a4c3a7 "HTTP/1.1 202 Accepted"
INFO:__main__:Connected to server with tools: ['get_now', 'web_search']

服务端日志:

> python fast_server.py
INFO:     Started server process [97933]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://0.0.0.0:8088 (Press CTRL+C to quit)
INFO:     127.0.0.1:50789 - "GET /sse HTTP/1.1" 200 OK
INFO:     127.0.0.1:50791 - "POST /messages/?session_id=6f7720204b1b4e6ab53ccd65d7a4c3a7 HTTP/1.1" 202 Accepted
INFO:     127.0.0.1:50793 - "POST /messages/?session_id=6f7720204b1b4e6ab53ccd65d7a4c3a7 HTTP/1.1" 202 Accepted
INFO:     127.0.0.1:50795 - "POST /messages/?session_id=6f7720204b1b4e6ab53ccd65d7a4c3a7 HTTP/1.1" 202 Accepted
[04/08/25 15:32:04] INFO     Processing request of type ListToolsRequest   

从上面的日志可以看到:

  1. 客户端通过http://localhost:8088/sse建立连接
  2. 服务端返回带session_id的URL: http://localhost:8088/messages/?session_id=6f7720204b1b4e6ab53ccd65d7a4c3a7
  3. 客户端通过这个端点发送POST请求,进入初始化阶段(能力协商等)。
  4. 然后发送了ListToolsRequest请求获取工具列表。
    • 这里返回了服务端定义的两个工具

然后假设用户输入了一个问题(客户端日志):

MCP Chat Client Started!
Type your queries or 'q' to exit.Query: 现在几点了
INFO:httpx:HTTP Request: POST http://localhost:8088/messages/?session_id=5fd44bdc7c564f4c9feea03e59b6fc88 "HTTP/1.1 202 Accepted"
INFO:httpx:HTTP Request: POST http://***/v1/chat/completions "HTTP/1.1 200 "
INFO:httpx:HTTP Request: POST http://localhost:8088/messages/?session_id=5fd44bdc7c564f4c9feea03e59b6fc88 "HTTP/1.1 202 Accepted"
INFO:__main__:Tool get_now returned: 2025-04-08 16:11:54
INFO:httpx:HTTP Request: POST http://***/v1/chat/completions "HTTP/1.1 200 "[Called get_now with args {}]
现在的时间是2025年4月8日16点11分54秒。 Query: 

服务端日志:

INFO:     127.0.0.1:60904 - "POST /messages/?session_id=5fd44bdc7c564f4c9feea03e59b6fc88 HTTP/1.1" 202 Accepted
[04/08/25 16:11:51] INFO     Processing request of type ListToolsRequest                                                                                                       server.py:534
INFO:     127.0.0.1:60925 - "POST /messages/?session_id=5fd44bdc7c564f4c9feea03e59b6fc88 HTTP/1.1" 202 Accepted
[04/08/25 16:11:54] INFO     Processing request of type CallToolRequest         

这里用户输入了一个问题,实际上执行过程如下:

  1. 通过带session_id的URL发送POST请求获取工具列表(ListToolsRequest)
  2. 服务端返回工具列表
  3. 调用LLM来决定是否需要调用工具
  4. (这里需要调用工具)发送CallToolRequest
  5. 服务端处理CallToolRequest,执行工具调用并返回结果
  6. 客户端对工具调用结果进行渲染,返回给用户

参考

  1. https://modelcontextprotocol.io/
  2. https://spec.modelcontextprotocol.io/specification/2025-03-26/
  3. https://github.com/sidharthrajaram/mcp-sse
http://www.dtcms.com/a/458613.html

相关文章:

  • 古董手表网站30天网站建设
  • 做网站交接需要哪些权限企业信用公示信息系统(全国)官网
  • 【论文学习】交互式图像分割顶会论文
  • 网站主办单位负责人网站竞价如何做
  • 吴恩达机器学习课程(PyTorch 适配)学习笔记:3.2 降维技术详解(PCA)
  • 一元购网站建设多少钱手机网站生成代码
  • 天津免费做网站公司网站建设30元
  • 天津智能网站建设制作做电商要关注哪些网站
  • 商店网站源码淮安做网站
  • Effective STL 第4条:调用empty()而不是检查size()是否为0
  • 家具网站开发环境与工具铜陵市网站建设
  • Mysql初阶第三讲:Mysql数据类型
  • 网络营销价格北京seo公司工作
  • 徐州cms模板建站建设购物网站多少钱
  • 视频网站点击链接怎么做的工业设计出来做什么
  • 怎样把网站做的漂亮个人网站用主机做服务器
  • 备案掉了网站会怎样开发一套小区多少钱
  • Java基础 10.8
  • 长湖南营销型网站简单网站建设公司
  • 计算机基础——浏览器、算法、计算机原理和编译原理等
  • 网站制作企业有哪些下页
  • 企业做外贸网站常用术语通江移动网站建设
  • vultr做网站广东软件公司排名
  • [1]python爬虫入门,爬取豆瓣电影top250实践
  • 学习网站开发体会与感想wordpress多语言插件:qtranslate
  • 辽源市网站建设html怎么制作网页
  • 旅游网站建设的目标蓝天下品牌运营业务展示
  • 网站死循环青岛网红打卡景点
  • 域名过期做的网站怎么办门户网站建设与推广方案
  • 文档做网站闵行营销型网站制作