AI 实战2 - face -detect
人脸检测
- 环境
- 安装源设置
- conda 环境安装依赖库
- 概述
- 数据集
- wider_face转yolo
- 环境依赖
- 标注信息格式转换
- 图片处理
- 生成 train.txt 文件
- 数据集展示
- 数据集加载和处理
- 参考文章
环境
安装源设置
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
conda 环境安装依赖库
conda create -n facePay python=3.7
conda activate facePay
conda install pytorch-cpu -c pytorch
#使用conda install pytorch-cpu会快很多
pip3 install torchvision -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install bcolz
pip install scikit-learn
pip install tqdm
pip install easydict
概述
人脸检测属于目标检测领域,目标检测领域分两大类:通用目标检测(n+1分类),特定类别目标检测(2分类)
人脸检测算法:Faster-RCNN系列,YOLO系列,级联CNN系列
评价指标:召回率,误检率,检测速度
数据集
yolo 通过txt文件标注,标注内容:0 0.15 0.33 0.14 0.22
对应:类别 归一化后中心点坐标 [x,y,w,h]
wider_face转yolo
环境依赖
# PIL 安装
pip install -U Pillow -i https://pypi.tuna.tsinghua.edu.cn/simple
conda install Pillow
# pip 安装会报错,conda 安装正常
标注信息格式转换
import os
from PIL import Image
parent_path = "/home/ai/wider_face_split/"
def convert_to_yolo_format(input_file, output_dir, image_dir):
with open(input_file, 'r') as f:
lines = f.readlines()
i = 0
while i < len(lines):
image_path = lines[i].strip() # Get the relative path of image
num_boxes = int(lines[i + 1].strip()) # Get the number of boxes
# Path of the label file
label_path = os.path.join(output_dir, os.path.basename(image_path).replace('.jpg', '.txt'))
os.makedirs(os.path.dirname(label_path), exist_ok=True)
# Get the Absolute Path of the image
image_abs_path = os.path.join(image_dir, image_path)
# Open the image to get the real size of it
with Image.open(image_abs_path) as img:
img_width, img_height = img.size
# Create the file and write data in
with open(label_path, 'w') as label_file:
for j in range(num_boxes):
# Fetch the box data (x_min, y_min, width, height)
box_data = list(map(int, lines[i + 2 + j].strip().split()))
x_min, y_min, width, height = box_data[:4]
# Calculate the center coordinate (x_center, y_center)
x_center = (x_min + width / 2)
y_center = (y_min + height / 2)
# Convert to the relative coordinates
x_center /= img_width
y_center /= img_height
width /= img_width
height /= img_height
# The class is defaulted by 0
label_file.write(f"0 {x_center} {y_center} {width} {height}\n")
# Update the index and jump to the next image
i += 2 + (1 if num_boxes == 0 else num_boxes)
if __name__ == "__main__":
# Modify the additional section by your own path
input_path = parent_path+"wider_face_split/"
output_path = parent_path+"wider_for_yolo/"
input_file_pre = "wider_face_"
input_file_sub = "_bbx_gt.txt"
if not os.path.exists(output_path):
os.makedirs(output_path)
# Train and Validation
datasetfile = ["train", "val"]
for category in datasetfile:
convert_to_yolo_format(input_path + input_file_pre + category + input_file_sub,
output_path + category + "/labels",
parent_path+f"WIDER_{category}/images")
图片处理
wider_face对不同情景的图片做了分类,YOLO要求训练图片在一个文件夹,因此训练前需要将数据集所有图片copy到一个文件夹下
import os
import shutil
def copy_images(src_dir, dest_dir):
# 确保目标目录存在
if not os.path.exists(dest_dir):
os.makedirs(dest_dir)
# 递归查找所有图片
for root, _, files in os.walk(src_dir):
for file in files:
if file.lower().endswith(('.jpg', '.jpeg', '.png', '.bmp', '.tiff', '.webp')):
src_path = os.path.join(root, file)
dest_path = os.path.join(dest_dir, file)
# 如果目标文件已存在,可以选择覆盖或跳过
if not os.path.exists(dest_path):
shutil.copy2(src_path, dest_path) # 保留原文件元数据
print(f"Copied: {src_path} -> {dest_path}")
else:
print(f"Skipped (already exists): {dest_path}")
# 配置源文件夹和目标文件夹路径
train_source_folder = r"/home/a/wider_face_split/WIDER_train/images"
train_destination_folder = r"/home/a/wider_face_split/WIDER_train/data"
val_source_folder = r"/home/a/wider_face_split/WIDER_val/images"
val_destination_folder = r"/home/a/wider_face_split/WIDER_val/data"
# 执行复制
copy_images(train_source_folder, train_destination_folder)
copy_images(val_source_folder, val_destination_folder)
生成 train.txt 文件
ls -al images/ | awk '{print $NF}' > ../train.txt
数据集展示
import cv2
import os
import numpy as np
if __name__ == "__main__":
# 第一步:指定文件路径
root_path ='/home/neucore/develop/code/pre_research/dl/face_ai/study/yoloDataset/train/images/'
path = '/home/neucore/develop/code/pre_research/dl/face_ai/study/yoloDataset/train.txt'
path_voc_names = '/home/neucore/develop/code/pre_research/dl/face_ai/study/yoloDataset/face.names'
# 第二步:获取目标类别
with open(path_voc_names ,'r') as f:
lable_map = f.readlines()
for i in range(len(lable_map)):
lable_map[i] = lable_map[i].strip()
print(i, lable_map[i])
# 第三步:获取图像数据和标注信息
with open(path ,'r') as file:
img_files = file.readlines()
# img_files = os.path.join(root_path, img_files[i][0:])
for i in range(len(img_files)):
img_files[i] = img_files[i].strip()
# 图像的绝对路径, [0:]表示去掉多少个字节,[2:]表示去掉前两个字符
img_files[i] = os.path.join(root_path, img_files[i][0:])
# print(i, img_files[i])
label_files = [x.replace('images','labels').replace ('.jpg','.txt') for x in img_files]
# print(label_files)
#第四步:将标注信息给制在图像上
#读取图像并对标注信息进行绘
# for i in range(len(img_files)):
for i in range (3):
print (img_files[i])
# 图像读取,获取宽高
img =cv2.imread(img_files[i])
if img is None:
print("Error: Image not found or path is incorrect.")
w = img.shape[1]
h = img.shape[0]
# 标签文件的绝对路径
print(i, label_files[i])
if os.path.isfile(label_files[i]):
# 获取每一行的标注信息
with open(label_files[i], 'r') as file:
lines = file.read().splitlines()
# 获取每一行的标准信息(class,x,y,w,h)
x = np.array([x.split() for x in lines], dtype=np.float32)
for k in range(len(x)):
anno = x[k]
label = int(anno[0])
# 获取框的坐标值,左上角坐标和右下角坐标
x1 = int((float(anno[1]) - float(anno[3])/2) * w)
y1 = int((float(anno[2]) - float(anno[4])/2) * h)
x2 = int((float(anno[1]) + float(anno[3])/2) * w)
y2 = int((float(anno[2]) + float(anno[4])/2) * h)
# 将标注框绘制在图像上
cv2.rectangle(img, (x1,y1), (x2,y2), (255,30,30), 2)
# 将标注类别绘制在图像上
cv2.putText(img, ("%s"%(str(lable_map[label]))), (x1,y1),cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 1)
cv2.imshow('img', img)
cv2.waitKey()
# if cv2.waitKey(1) == 27:
# break
cv2.destroyAllWindows()
数据集加载和处理
参考文章
WIDER FACE数据集转YOLO格式