当前位置: 首页 > news >正文

c 转网站开发重庆网站建设机构

c 转网站开发,重庆网站建设机构,鲜花网站建设的总体目标,wordpress建站需要多久目录 DAY 18 推断聚类后簇的类型1.推断簇含义的2个思路:先选特征和后选特征2.通过可视化图形借助ai定义簇的含义3.科研逻辑闭环:通过精度判断特征工程价值作业:参考示例代码对心脏病数据集采取类似操作,并且评估特征工程后模型效果有无提升。…

目录

      • DAY 18 推断聚类后簇的类型
        • 1.推断簇含义的2个思路:先选特征和后选特征
        • 2.通过可视化图形借助ai定义簇的含义
        • 3.科研逻辑闭环:通过精度判断特征工程价值
        • 作业:参考示例代码对心脏病数据集采取类似操作,并且评估特征工程后模型效果有无提升。

DAY 18 推断聚类后簇的类型

聚类后的分析:推断簇的类型

import seaborn as sns
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering
import numpy as np
import warnings
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from sklearn.naive_bayes import GaussianNB
from sklearn.tree import DecisionTreeClassifier
from catboost import CatBoostClassifier
from sklearn.ensemble import RandomForestClassifier
import lightgbm as lgb
import xgboost as xgb
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
import time
from sklearn.model_selection import train_test_split
import pandas as pd
import matplotlib.pyplot as plt
warnings.filterwarnings('ignore')plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = Falsedata = pd.read_csv(r'data.csv')list_discrete = data.select_dtypes(include=['object']).columns.tolist()home_ownership_mapping = {'Own Home': 1, 'Rent': 2,'Have Mortgage': 3, 'Home Mortgage': 4}
data['Home Ownership'] = data['Home Ownership'].map(home_ownership_mapping)years_in_job_mapping = {'< 1 year': 1, '1 year': 2, '2 years': 3, '3 years': 4, '4 years': 5,'5 years': 6, '6 years': 7, '7 years': 8, '8 years': 9, '9 years': 10, '10+ years': 11}
data['Years in current job'] = data['Years in current job'].map(years_in_job_mapping)data = pd.get_dummies(data, columns=['Purpose'])
data2 = pd.read_csv(r'data.csv')
list_new = []
for i in data.columns:if i not in data2.columns:list_new.append(i)
for i in list_new:data[i] = data[i].astype(int)term_mapping = {'Short Term': 0, 'Long Term': 1}
data['Term'] = data['Term'].map(term_mapping)
data.rename(columns={'Term': 'Long Term'}, inplace=True)list_continuous = data.select_dtypes(include=['int64', 'float64']).columns.tolist()for i in list_continuous:median_value = data[i].median()data[i] = data[i].fillna(median_value)X = data.drop(['Credit Default'], axis=1)
Y = data['Credit Default']
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score, calinski_harabasz_score, davies_bouldin_score
import matplotlib.pyplot as pltk_range = range(2, 11)
inertia_values = []
silhouette_scores = []
ch_scores = []
db_scores = []for k in k_range:kmeans = KMeans(n_clusters=k, random_state=42)kmeans_labels = kmeans.fit_predict(X_scaled)inertia_values.append(kmeans.inertia_)silhouette = silhouette_score(X_scaled, kmeans_labels)silhouette_scores.append(silhouette)ch = calinski_harabasz_score(X_scaled, kmeans_labels)ch_scores.append(ch)db = davies_bouldin_score(X_scaled, kmeans_labels)db_scores.append(db)print(f'k = {k}, 惯性: {kmeans.inertia_:.2f}, 轮廓系数: {silhouette:.3f}, CH 指数: {ch:.2f}, DB 指数: {db:.3f}')selected_k = 3kmeans = KMeans(n_clusters=selected_k, random_state=42)
kmeans_labels = kmeans.fit_predict(X_scaled)
X['KMeans_Cluster'] = kmeans_labelspca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)plt.figure(figsize=(6, 5))
sns.scatterplot(x=X_pca[:, 0], y=X_pca[:, 1],hue=kmeans_labels, palette='viridis')
plt.title(f'KMeans Clustering with k = {selected_k} (PCA Visualization)')
plt.xlabel('PCA Component 1')
plt.ylabel('PCA Component 2')
plt.show()print(f"KMeans Cluster labels (k = {selected_k}) added to X:")
print(X[['KMeans_Cluster']].value_counts())
k = 2, 惯性: 224921.38, 轮廓系数: 0.723, CH 指数: 252.64, DB 指数: 0.355
k = 3, 惯性: 210919.39, 轮廓系数: 0.320, CH 指数: 383.53, DB 指数: 2.446
k = 4, 惯性: 204637.65, 轮廓系数: 0.087, CH 指数: 340.21, DB 指数: 2.315
k = 5, 惯性: 198854.98, 轮廓系数: 0.106, CH 指数: 317.03, DB 指数: 2.232
k = 6, 惯性: 191274.31, 轮廓系数: 0.112, CH 指数: 323.04, DB 指数: 1.921
k = 7, 惯性: 183472.98, 轮廓系数: 0.121, CH 指数: 333.71, DB 指数: 1.750
k = 8, 惯性: 174533.93, 轮廓系数: 0.131, CH 指数: 355.46, DB 指数: 2.089
k = 9, 惯性: 167022.49, 轮廓系数: 0.133, CH 指数: 367.09, DB 指数: 1.862
k = 10, 惯性: 163353.82, 轮廓系数: 0.097, CH 指数: 352.27, DB 指数: 1.838

在这里插入图片描述

KMeans Cluster labels (k = 3) added to X:
KMeans_Cluster
0                 5953
1                 1451
2                   96
Name: count, dtype: int64
X.columns
Index(['Id', 'Home Ownership', 'Annual Income', 'Years in current job','Tax Liens', 'Number of Open Accounts', 'Years of Credit History','Maximum Open Credit', 'Number of Credit Problems','Months since last delinquent', 'Bankruptcies', 'Long Term','Current Loan Amount', 'Current Credit Balance', 'Monthly Debt','Credit Score', 'Purpose_business loan', 'Purpose_buy a car','Purpose_buy house', 'Purpose_debt consolidation','Purpose_educational expenses', 'Purpose_home improvements','Purpose_major purchase', 'Purpose_medical bills', 'Purpose_moving','Purpose_other', 'Purpose_renewable energy', 'Purpose_small business','Purpose_take a trip', 'Purpose_vacation', 'Purpose_wedding','KMeans_Cluster'],dtype='object')
1.推断簇含义的2个思路:先选特征和后选特征
from sklearn.ensemble import RandomForestClassifier
import numpy as np
import shapx1 = X.drop('KMeans_Cluster', axis=1)
y1 = X['KMeans_Cluster']
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(x1, y1)
shap.initjs()
explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(x1)
shap_values.shape
(7500, 31, 3)
2.通过可视化图形借助ai定义簇的含义
print('SHAP 特征重要性条形图')
shap.summary_plot(shap_values[:, :, 0], x1, plot_type='bar', show=False)
plt.title('SHAP Feature Importance (Bar Plot)')
plt.show()
SHAP 特征重要性条形图

在这里插入图片描述

selected_features = ['Purpose_debt consolidation', 'Purpose_other','Purpose_home improvements', 'Purpose_business loan']for feature in selected_features:unique_count = X[feature].nunique()print(f'{feature} 的唯一值数量: {unique_count}')if unique_count < 10:print(f'{feature} 可能是离散型变量')else:print(f'{feature} 可能是连续型变量')
Purpose_debt consolidation 的唯一值数量: 2
Purpose_debt consolidation 可能是离散型变量
Purpose_other 的唯一值数量: 2
Purpose_other 可能是离散型变量
Purpose_home improvements 的唯一值数量: 2
Purpose_home improvements 可能是离散型变量
Purpose_business loan 的唯一值数量: 2
Purpose_business loan 可能是离散型变量
import matplotlib.pyplot as pltfig, axes = plt.subplots(2, 2, figsize=(12, 8))
axes = axes.flatten()for i, feature in enumerate(selected_features):axes[i].hist(X[feature], bins=20)axes[i].set_title(f'Histogram of {feature}')axes[i].set_xlabel(feature)axes[i].set_ylabel('Frequency')plt.tight_layout()
plt.show()

在这里插入图片描述

X[['KMeans_Cluster']].value_counts()
KMeans_Cluster
0                 5953
1                 1451
2                   96
Name: count, dtype: int64
X_cluster0 = X[X['KMeans_Cluster'] == 0]
X_cluster1 = X[X['KMeans_Cluster'] == 1]
X_cluster2 = X[X['KMeans_Cluster'] == 2]
import matplotlib.pyplot as pltfig, axes = plt.subplots(2, 2, figsize=(12, 8))
axes = axes.flatten()for i, feature in enumerate(selected_features):axes[i].hist(X_cluster0[feature], bins=20)axes[i].set_title(f'Histogram of {feature}')axes[i].set_xlabel(feature)axes[i].set_ylabel('Frequency')plt.tight_layout()
plt.show()

在这里插入图片描述

import matplotlib.pyplot as pltfig, axes = plt.subplots(2, 2, figsize=(12, 8))
axes = axes.flatten()for i, feature in enumerate(selected_features):axes[i].hist(X_cluster1[feature], bins=20)axes[i].set_title(f'Histogram of {feature}')axes[i].set_xlabel(feature)axes[i].set_ylabel('Frequency')plt.tight_layout()
plt.show()

在这里插入图片描述

import matplotlib.pyplot as pltfig, axes = plt.subplots(2, 2, figsize=(12, 8))
axes = axes.flatten()for i, feature in enumerate(selected_features):axes[i].hist(X_cluster2[feature], bins=20)axes[i].set_title(f'Histogram of {feature}')axes[i].set_xlabel(feature)axes[i].set_ylabel('Frequency')plt.tight_layout()
plt.show()

在这里插入图片描述

3.科研逻辑闭环:通过精度判断特征工程价值
作业:参考示例代码对心脏病数据集采取类似操作,并且评估特征工程后模型效果有无提升。
import matplotlib.pyplot as plt
import time
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import LogisticRegression
import xgboost as xgb
import lightgbm as lgb
from sklearn.ensemble import RandomForestClassifier
from catboost import CatBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from sklearn.metrics import classification_report, confusion_matrix
import warnings
import numpy as np
from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
import seaborn as sns
from sklearn.model_selection import train_test_split
import pandas as pd
warnings.filterwarnings('ignore')plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = Falsedata = pd.read_csv(r'heart.csv')X = data.drop(['target'], axis=1)
Y = data['target']
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score, calinski_harabasz_score, davies_bouldin_score
import matplotlib.pyplot as pltk_range = range(2, 11)
inertia_values = []
silhouette_scores = []
ch_scores = []
db_scores = []for k in k_range:kmeans = KMeans(n_clusters=k, random_state=42)kmeans_labels = kmeans.fit_predict(X_scaled)inertia_values.append(kmeans.inertia_)silhouette = silhouette_score(X_scaled, kmeans_labels)silhouette_scores.append(silhouette)ch = calinski_harabasz_score(X_scaled, kmeans_labels)ch_scores.append(ch)db = davies_bouldin_score(X_scaled, kmeans_labels)db_scores.append(db)print(f'k = {k}, 惯性: {kmeans.inertia_:.2f}, 轮廓系数: {silhouette:.3f}, CH 指数: {ch:.2f}, DB 指数: {db:.3f}')selected_k = 3kmeans = KMeans(n_clusters=selected_k, random_state=42)
kmeans_labels = kmeans.fit_predict(X_scaled)
X['KMeans_Cluster'] = kmeans_labelspca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)plt.figure(figsize=(6, 5))
sns.scatterplot(x=X_pca[:, 0], y=X_pca[:, 1],hue=kmeans_labels, palette='viridis')
plt.title(f'KMeans Clustering with k = {selected_k} (PCA Visualization)')
plt.xlabel('PCA Component 1')
plt.ylabel('PCA Component 2')
plt.show()print(f"KMeans Cluster labels (k = {selected_k}) added to X:")
print(X[['KMeans_Cluster']].value_counts())
k = 2, 惯性: 3331.64, 轮廓系数: 0.166, CH 指数: 54.87, DB 指数: 2.209
k = 3, 惯性: 3087.69, 轮廓系数: 0.112, CH 指数: 41.36, DB 指数: 2.544
k = 4, 惯性: 2892.52, 轮廓系数: 0.118, CH 指数: 36.06, DB 指数: 2.175
k = 5, 惯性: 2814.65, 轮廓系数: 0.094, CH 指数: 29.76, DB 指数: 2.386
k = 6, 惯性: 2673.22, 轮廓系数: 0.095, CH 指数: 28.13, DB 指数: 2.377
k = 7, 惯性: 2596.68, 轮廓系数: 0.088, CH 指数: 25.50, DB 指数: 2.290
k = 8, 惯性: 2464.39, 轮廓系数: 0.115, CH 指数: 25.22, DB 指数: 2.136
k = 9, 惯性: 2415.63, 轮廓系数: 0.105, CH 指数: 23.18, DB 指数: 2.133
k = 10, 惯性: 2337.41, 轮廓系数: 0.111, CH 指数: 22.31, DB 指数: 2.056

在这里插入图片描述

KMeans Cluster labels (k = 3) added to X:
KMeans_Cluster
0                 108
1                  98
2                  97
Name: count, dtype: int64
X.columns
Index(['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach','exang', 'oldpeak', 'slope', 'ca', 'thal', 'KMeans_Cluster'],dtype='object')
from sklearn.ensemble import RandomForestClassifier
import numpy as np
import shapx1 = X.drop('KMeans_Cluster', axis=1)
y1 = X['KMeans_Cluster']
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(x1, y1)
shap.initjs()
explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(x1)
shap_values.shape
(303, 13, 3)
print('SHAP 特征重要性条形图')
shap.summary_plot(shap_values[:, :, 0], x1, plot_type='bar', show=False)
plt.title('SHAP Feature Importance (Bar Plot)')
plt.show()
SHAP 特征重要性条形图

在这里插入图片描述

selected_features = ['slope', 'sex', 'restecg', 'exang']for feature in selected_features:unique_count = X[feature].nunique()print(f'{feature} 的唯一值数量: {unique_count}')if unique_count < 10:print(f'{feature} 可能是离散型变量')else:print(f'{feature} 可能是连续型变量')
slope 的唯一值数量: 3
slope 可能是离散型变量
sex 的唯一值数量: 2
sex 可能是离散型变量
restecg 的唯一值数量: 3
restecg 可能是离散型变量
exang 的唯一值数量: 2
exang 可能是离散型变量
import matplotlib.pyplot as pltfig, axes = plt.subplots(2, 2, figsize=(12, 8))
axes = axes.flatten()for i, feature in enumerate(selected_features):axes[i].hist(X[feature], bins=20)axes[i].set_title(f'Histogram of {feature}')axes[i].set_xlabel(feature)axes[i].set_ylabel('Frequency')plt.tight_layout()
plt.show()

在这里插入图片描述

X[['KMeans_Cluster']].value_counts()
KMeans_Cluster
0                 108
1                  98
2                  97
Name: count, dtype: int64
X_cluster0 = X[X['KMeans_Cluster'] == 0]
X_cluster1 = X[X['KMeans_Cluster'] == 1]
X_cluster2 = X[X['KMeans_Cluster'] == 2]
import matplotlib.pyplot as pltfig, axes = plt.subplots(2, 2, figsize=(12, 8))
axes = axes.flatten()for i, feature in enumerate(selected_features):axes[i].hist(X_cluster0[feature], bins=20)axes[i].set_title(f'Histogram of {feature}')axes[i].set_xlabel(feature)axes[i].set_ylabel('Frequency')plt.tight_layout()
plt.show()

在这里插入图片描述

import matplotlib.pyplot as pltfig, axes = plt.subplots(2, 2, figsize=(12, 8))
axes = axes.flatten()for i, feature in enumerate(selected_features):axes[i].hist(X_cluster1[feature], bins=20)axes[i].set_title(f'Histogram of {feature}')axes[i].set_xlabel(feature)axes[i].set_ylabel('Frequency')plt.tight_layout()
plt.show()

在这里插入图片描述

import matplotlib.pyplot as pltfig, axes = plt.subplots(2, 2, figsize=(12, 8))
axes = axes.flatten()for i, feature in enumerate(selected_features):axes[i].hist(X_cluster2[feature], bins=20)axes[i].set_title(f'Histogram of {feature}')axes[i].set_xlabel(feature)axes[i].set_ylabel('Frequency')plt.tight_layout()
plt.show()

在这里插入图片描述
@浙大疏锦行

http://www.dtcms.com/a/445110.html

相关文章:

  • 网站采用什么字体品牌网上授权
  • 自己建设购物网站宁波海曙网站建设
  • 移动网站开发服务花都网站建设公司天蝎信息
  • 广州微信网站制作北京运营推广网站建设
  • 全景网站制作网站怎么做才 吸引人
  • 网页制作网站设计稿杭州的电商网站建设
  • 网页制作与网站建设策划书案例昆明网站制作推荐
  • 网站建设域名的购买增城头条新闻
  • 网站缓存设置怎么做手机怎么开发软件app
  • 精英学校老师给学生做的网站wordpress企业主题模板
  • 手机网站开发实例成都网站建设 工资
  • 网站开发工具发展史活动汪活动策划网站
  • 怎么做信息采集的网站太原网站建设托管
  • 启东市住房城乡建设局网站免费造网站
  • 需要网站建设的是哪一类人太仓市建设招标网站
  • 天津市城乡建设网站网页制作基础教程使用spry构件
  • vi设计公司 焕识网站打开速度优化
  • 优秀网站推荐app设计网站推荐
  • 西安网站设计费用个人养老保险缴费查询
  • 网络推广和网站推广平台沈阳今天最新通知
  • 照片后期网站网站建立企业
  • 阿里云轻应用服务器 建设网站wordpress文章列表怎么折叠起来
  • 网站打开太慢什么原因怎么推广自己做的网站
  • 主题资源网站制作平台编程软件大全
  • 小程序app分销网站建设沧州手机建站哪家好
  • 网站后期的维护管理网络系统脆弱性的不安全因素
  • 如何建立内外网网站淮北专业三合一网站开发
  • 如何自己动手做网站深圳高端网站定制公司
  • 机械加工网站色彩搭配婚纱摄影网页制作
  • 住房和城乡建设部网站防烟排烟美发店网站源码