当前位置: 首页 > news >正文

网站建设用啥系统好做网站程序看什么书

网站建设用啥系统好,做网站程序看什么书,东莞seo优化,如何选择五屏网站建设1、std 用于计算 DataFrame 中数值的标准差。 DataFrame.std(axis0, skipnaTrue, ddof1, numeric_onlyFalse, **kwargs) 描述说明axis {0 或 ‘index’, 1 或 ‘columns’, None}, 默认为 0。这个参数决定了计算标准差是在哪个轴上进行: 如果 axis0 或 axisindex&…

1、std

        用于计算 DataFrame 中数值的标准差。

DataFrame.std(axis=0, skipna=True, ddof=1, numeric_only=False, **kwargs)
描述说明
axis

{0 或 ‘index’, 1 或 ‘columns’, None}, 默认为 0。这个参数决定了计算标准差是在哪个轴上进行:

如果 axis=0 或 axis='index',则对每列进行计算,返回一个 Series,其 索引为列名,值为每列的标准差。

如果 axis=1 或 axis='columns',则对每行进行计算,返回一个 Series, 其索引为行索引,值为每行的标准差。

skipna布尔值,默认为 True。如果为 True,则在计算标准差时会忽略 NaN 值。
ddof整数,默认为 1。Delta Degrees of Freedom,计算样本标准差时使用的无 偏估计的自由度修正。对于整个群体的标准差, ddof 应该设置为 0。
numeric_only布尔值,默认为 False。如果为 True,则只对数值列进行计算, 忽略非数值列。
**kwargs其他关键字参数。这些参数通常用于兼容性或特殊用途,通常不需 要。
import pandas as pd
import numpy as np
df = pd.DataFrame({'A': [1, 2, 3, 4],'B': [5, 6, 7, 8],
})
sum_per_column = df.std()
print("std per column:")
print(sum_per_column)
std per column:
A    1.290994
B    1.290994
dtype: float64

2 、quantile

        用于计算 DataFrame 中数值的分位数。

DataFrame.quantile(q=0.5, axis=0, numeric_only=False, interpolation='linear', method='single')
描述说明
q可以是单个浮点数或浮点数列表,默认为 0.5。要计算的的分位数,应该在 0 到 1 之间。例如,q=0.5 表示中位数。
axis

{0 或 ‘index’, 1 或 ‘columns’, None}, 默认为 0。这个参数决定了计算分位数是在哪个轴上进行:

如果 axis=0 或 axis='index',则对每列进行计算,返回一个 Series,其 索引为列名,值为每列的分位数。

如果 axis=1 或 axis='columns',则对每行进行计算,返回一个 Series, 其索引为行索引,值为每行的分位数。

numeric_only布尔值,默认为 False。如果为 True,则只对数值列进行计算, 忽略非数值列。
interpolation

{‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}, 默认为 ‘linear’。这个参数决定了分位数在数据不包含精确分位数值时的插值方法:

‘linear’: 线性插值。

‘lower’: 选择小于分位数的最大值。

‘higher’: 选择大于分位数的最小值。

‘midpoint’: 选择两个相邻数据的中间值。

‘nearest’: 选择最接近分位数的值。

method

{‘single’, ‘table’}, 默认为 ‘single’。这个参数决定了计算分位数的方法:

‘single’: 对每列或每行单独计算分位数。

‘table’: 使用整个表的分位数。选择table时,插值方法只能是higher、 lower、nearest之一。

import pandas as pd
import numpy as np
df = pd.DataFrame({'A': [1, 2, 3, 4],'B': [5, 6, 7, 8],
})
sum_per_column = df.quantile()
print("quantile per column:")
print(sum_per_column)
quantile per column:
A    2.5
B    6.5
Name: 0.5, dtype: float64

3、 cummax

        用于计算 DataFrame 中数值的累积最大值。

DataFrame.cummax(axis=0, skipna=True, *args, **kwargs)
描述说明
axis

{0 或 ‘index’, 1 或 ‘columns’, None}, 默认为 0。这个参数决定了计算累积最大值是在哪个轴上进行:

如果 axis=0 或 axis='index',则对每列进行计算,返回一个 Series,其 索引为列名,值为每列的累积最大值。

如果 axis=1 或 axis='columns',则对每行进行计算,返回一个 Series, 其索引为行索引,值为每行的累积最大值。

skipna布尔值,默认为 True。如果为 True,则在计算累积最大值时会忽略 NaN 值。
*args 和 **kwargs其他关键字参数。这些参数通常用于兼容性或特殊用途,通常不需 要。
import pandas as pd
import numpy as np# 创建一个 DataFrame
df = pd.DataFrame({'A': [1, 2, np.nan, 4, 5],'B': [5, np.nan, 3, 2, 1],
})print(df)# 计算每列的累积最大值
cummax_per_column = df.cummax(axis=0)
print("Cumulative max per column:")
print(cummax_per_column)# 计算每行的累积最大值
cummax_per_row = df.cummax(axis=1)
print("\nCumulative max per row:")
print(cummax_per_row)
     A    B
0  1.0  5.0
1  2.0  NaN
2  NaN  3.0
3  4.0  2.0
4  5.0  1.0
Cumulative max per column:A    B
0  1.0  5.0
1  2.0  NaN
2  NaN  5.0
3  4.0  5.0
4  5.0  5.0Cumulative max per row:A    B
0  1.0  5.0
1  2.0  NaN
2  NaN  3.0
3  4.0  4.0
4  5.0  5.0

4、 cummin

 用于计算 DataFrame 中数值的累积最小值。

DataFrame.cummin(axis=0, skipna=True, *args, **kwargs)
描述说明
axis

{0 或 ‘index’, 1 或 ‘columns’, None}, 默认为 0。这个参数决定了计算累积最小值是在哪个轴上进行:

如果 axis=0 或 axis='index',则对每列进行计算,返回一个 Series,其 索引为列名,值为每列的累积最小值。

如果 axis=1 或 axis='columns',则对每行进行计算,返回一个 Series, 其索引为行索引,值为每行的累积最小值。

skipna布尔值,默认为 True。如果为 True,则在计算累积最小值时会忽略 NaN 值。
*args 和 **kwargs其他关键字参数。这些参数通常用于兼容性或特殊用途,通常不需 要。
import pandas as pd
import numpy as np# 创建一个 DataFrame
df = pd.DataFrame({'A': [1, 2, np.nan, 4, 5],'B': [5, np.nan, 3, 2, 1],
})print(df)# 计算每列的累积最小值
cummin_per_column = df.cummin(axis=0)
print("Cumulative min per column:")
print(cummax_per_column)# 计算每行的累积最小值
cummin_per_row = df.cummin(axis=1)
print("\nCumulative min per row:")
print(cummax_per_row)
     A    B
0  1.0  5.0
1  2.0  NaN
2  NaN  3.0
3  4.0  2.0
4  5.0  1.0
Cumulative min per column:A    B
0  1.0  5.0
1  2.0  NaN
2  NaN  5.0
3  4.0  5.0
4  5.0  5.0Cumulative min per row:A    B
0  1.0  5.0
1  2.0  NaN
2  NaN  3.0
3  4.0  4.0
4  5.0  5.0

5、 cumsum

         用于计算 DataFrame 中数值的累积 和。

DataFrame.cumsum(axis=0, skipna=True, *args, **kwargs)
描述说明
axis

{0 或 ‘index’, 1 或 ‘columns’, None}, 默认为 0。这个参数决定了计算累积 和是在哪个轴上进行:

如果 axis=0 或 axis='index',则对每列进行计算,返回一个 Series,其 索引为列名,值为每列的累积 和。

如果 axis=1 或 axis='columns',则对每行进行计算,返回一个 Series, 其索引为行索引,值为每行的累积 和。

skipna布尔值,默认为 True。如果为 True,则在计算累积 和时会忽略 NaN 值。
*args 和 **kwargs其他关键字参数。这些参数通常用于兼容性或特殊用途,通常不需 要。
import pandas as pd
import numpy as np# 创建一个 DataFrame
df = pd.DataFrame({'A': [1, 2, np.nan, 4, 5],'B': [5, np.nan, 3, 2, 1],
})print(df)# 计算每列的累积和
cumsum_per_column = df.cumsum(axis=0)
print("Cumulative sum per column:")
print(cummax_per_column)# 计算每行的累积和
cumsum_per_row = df.cumsum(axis=1)
print("\nCumulative sum per row:")
print(cummax_per_row)
     A    B
0  1.0  5.0
1  2.0  NaN
2  NaN  3.0
3  4.0  2.0
4  5.0  1.0
Cumulative sum per column:A    B
0  1.0  5.0
1  2.0  NaN
2  NaN  5.0
3  4.0  5.0
4  5.0  5.0Cumulative sum per row:A    B
0  1.0  5.0
1  2.0  NaN
2  NaN  3.0
3  4.0  4.0
4  5.0  5.0

6、 cumprod

         用于计算 DataFrame 中数值的累积乘积。

DataFrame.cumprod(axis=0, skipna=True, *args, **kwargs)
描述说明
axis

{0 或 ‘index’, 1 或 ‘columns’, None}, 默认为 0。这个参数决定了计算累积乘积是在哪个轴上进行:

如果 axis=0 或 axis='index',则对每列进行计算,返回一个 Series,其 索引为列名,值为每列的累积乘积。

如果 axis=1 或 axis='columns',则对每行进行计算,返回一个 Series, 其索引为行索引,值为每行的累积乘积。

skipna布尔值,默认为 True。如果为 True,则在计算累积乘积时会忽略 NaN 值。
*args 和 **kwargs其他关键字参数。这些参数通常用于兼容性或特殊用途,通常不需 要。
import pandas as pd
import numpy as np# 创建一个 DataFrame
df = pd.DataFrame({'A': [1, 2, np.nan, 4, 5],'B': [5, np.nan, 3, 2, 1],
})print(df)# 计算每列的累积乘积
cumprod_per_column = df.cumprod(axis=0)
print("Cumulative sum per column:")
print(cummax_per_column)# 计算每行的累积乘积
cumprod_per_row = df.cumprod(axis=1)
print("\nCumulative sum per row:")
print(cummax_per_row)
     A    B
0  1.0  5.0
1  2.0  NaN
2  NaN  3.0
3  4.0  2.0
4  5.0  1.0
Cumulative sum per column:A    B
0  1.0  5.0
1  2.0  NaN
2  NaN  5.0
3  4.0  5.0
4  5.0  5.0Cumulative sum per row:A    B
0  1.0  5.0
1  2.0  NaN
2  NaN  3.0
3  4.0  4.0
4  5.0  5.0

 

http://www.dtcms.com/a/441063.html

相关文章:

  • 阿里云可以做网站么资格证网站怎么做
  • 网页设计与网站建设教材泉州网红打卡地
  • 定制高端网站wordpress自动分享插件下载地址
  • 抚松做网站wordpress中文书籍
  • 微信网站和手机网站的区别企业网站建设需要准备什么
  • 手机定制网站建设公众号做电影采集网站会被封
  • 招聘网站可以同时做两份简历吗6成都营销型网站建设中账号
  • 上海网站建设的价格是多少钱淄博网站制作品牌定制
  • 乐陵seo网站服装网站建设论文
  • python做网站步骤建设银行海门支行网站
  • 有什么好的网站做旅行计划中国建设监理协会官方网站
  • 做引流网站怎么赚钱赚谁的钱昆明网站建设团队
  • 织梦网站地图如何做网页制作学情分析
  • php做的网站如何运行工信部网站备案流程
  • 网站建设咨询话术专业建筑公司网站
  • 鲜花网站开发做怎么网站推广
  • 同时做网站建设和代账wordpress备份和恢复
  • 购物网站开发介绍《php网站开发》电子课件
  • 书城网站建设规划书开公司网站创建费用
  • 常州网站排名优化知名的wordpress主题
  • 免费源码资源站娱乐网站建设流程
  • 如何利用网站做淘宝联盟简洁大气的网站首页
  • 中国国内网站建设哪家强个人网站做导购要什么经营许可
  • 网站前端后端分开做可以吗学院网站怎么做的
  • 网站界面需求门户类网站是什么意思
  • 大学网站建设目标网站制作商家入驻
  • 宁波网站推广联系方式电子商务网站建设及推广
  • c做网站那个平台能免费做网站
  • 免费做头像网站有哪些济源网站建设的公司
  • 建设小网站教程天津网站快速排名提升