分段函数的傅里叶变换及其应用
题目
问题5. 求下列函数的傅里叶变换(设 a>0 a > 0 a>0):
(a) f(x)={1∣x∣≤a,0∣x∣>a; f(x) = \begin{cases} 1 & |x| \leq a, \\ 0 & |x| > a; \end{cases} f(x)={10∣x∣≤a,∣x∣>a;
(b) f(x)={x∣x∣≤a,0∣x∣>a; f(x) = \begin{cases} x & |x| \leq a, \\ 0 & |x| > a; \end{cases} f(x)={x0∣x∣≤a,∣x∣>a;
© f(x)={∣x∣∣x∣≤a,0∣x∣>a; f(x) = \begin{cases} |x| & |x| \leq a, \\ 0 & |x| > a; \end{cases} f(x)={∣x∣0∣x∣≤a,∣x∣>a;
(d) f(x)={a−∣x∣∣x∣≤a,0∣x∣>a; f(x) = \begin{cases} a - |x| & |x| \leq a, \\ 0 & |x| > a; \end{cases} f(x)={a−∣x∣0∣x∣≤a,∣x∣>a;
(e) f(x)={a2−x2∣x∣≤a,0∣x∣>a; f(x) = \begin{cases} a^2 - x^2 & |x| \leq a, \\ 0 & |x| > a; \end{cases} f(x)={a2−x20∣x∣≤a,∣x∣>a;
(f) 使用 (a) 的结果计算 ∫−∞∞sin(x)xdx \int_{-\infty}^{\infty} \frac{\sin(x)}{x} dx ∫−∞∞xsin(x)dx.
解决方案:
傅里叶变换的定义为:
f^(k)=∫−∞∞f(x)e−ikxdx
\hat{f}(k) = \int_{-\infty}^{\infty} f(x) e^{-i k x} dx
f^(k)=∫−∞∞f(x)e−ikxdx
(a) f(x)={1∣x∣≤a0∣x∣>a f(x) = \begin{cases} 1 & |x| \leq a \\ 0 & |x| > a \end{cases} f(x)={10∣x∣≤a∣x∣>a
f^(k)=∫−aae−ikxdx=[e−ikx−ik]−aa=e−ika−eika−ik=2sin(ka)k
\hat{f}(k) = \int_{-a}^{a} e^{-i k x} dx = \left[ \frac{e^{-i k x}}{-i k} \right]_{-a}^{a} = \frac{e^{-i k a} - e^{i k a}}{-i k} = \frac{2 \sin(k a)}{k}
f^(k)=∫−aae−ikxdx=[−ike−ikx]−aa=−ike−ika−eika=k2sin(ka)
所以,
f^(k)=2sin(ka)k
\boxed{\hat{f}(k) = \frac{2 \sin(k a)}{k}}
f^(k)=k2sin(ka)
(b) f(x)={x∣x∣≤a0∣x∣>a f(x) = \begin{cases} x & |x| \leq a \\ 0 & |x| > a \end{cases} f(x)={x0∣x∣≤a∣x∣>a
f^(k)=∫−aaxe−ikxdx
\hat{f}(k) = \int_{-a}^{a} x e^{-i k x} dx
f^(k)=∫−aaxe−ikxdx
使用积分公式:
∫xe−ikxdx=−e−ikx(ikx+1)k2+C
\int x e^{-i k x} dx = - \frac{e^{-i k x} (i k x + 1)}{k^2} + C
∫xe−ikxdx=−k2e−ikx(ikx+1)+C
代入上下限:
f^(k)=[−e−ikx(ikx+1)k2]−aa=2ik2[sin(ka)−kacos(ka)]
\hat{f}(k) = \left[ - \frac{e^{-i k x} (i k x + 1)}{k^2} \right]_{-a}^{a} = \frac{2 i}{k^2} \left[ \sin(k a) - k a \cos(k a) \right]
f^(k)=[−k2e−ikx(ikx+1)]−aa=k22i[sin(ka)−kacos(ka)]
所以,
f^(k)=2ik2[sin(ka)−kacos(ka)]
\boxed{\hat{f}(k) = \frac{2 i}{k^2} \left[ \sin(k a) - k a \cos(k a) \right]}
f^(k)=k22i[sin(ka)−kacos(ka)]
© f(x)={∣x∣∣x∣≤a0∣x∣>a f(x) = \begin{cases} |x| & |x| \leq a \\ 0 & |x| > a \end{cases} f(x)={∣x∣0∣x∣≤a∣x∣>a
由于 f(x) f(x) f(x) 是偶函数,
f^(k)=2∫0axcos(kx)dx
\hat{f}(k) = 2 \int_{0}^{a} x \cos(k x) dx
f^(k)=2∫0axcos(kx)dx
计算积分:
∫0axcos(kx)dx=[xsin(kx)k+cos(kx)k2]0a=asin(ka)k+cos(ka)k2−1k2
\int_{0}^{a} x \cos(k x) dx = \left[ \frac{x \sin(k x)}{k} + \frac{\cos(k x)}{k^2} \right]_{0}^{a} = \frac{a \sin(k a)}{k} + \frac{\cos(k a)}{k^2} - \frac{1}{k^2}
∫0axcos(kx)dx=[kxsin(kx)+k2cos(kx)]0a=kasin(ka)+k2cos(ka)−k21
所以,
f^(k)=2[asin(ka)k+cos(ka)k2−1k2]=2asin(ka)k+2cos(ka)k2−2k2
\hat{f}(k) = 2 \left[ \frac{a \sin(k a)}{k} + \frac{\cos(k a)}{k^2} - \frac{1}{k^2} \right] = \frac{2 a \sin(k a)}{k} + \frac{2 \cos(k a)}{k^2} - \frac{2}{k^2}
f^(k)=2[kasin(ka)+k2cos(ka)−k21]=k2asin(ka)+k22cos(ka)−k22
即,
f^(k)=2k2[cos(ka)−1]+2asin(ka)k
\boxed{\hat{f}(k) = \frac{2}{k^2} \left[ \cos(k a) - 1 \right] + \frac{2 a \sin(k a)}{k}}
f^(k)=k22[cos(ka)−1]+k2asin(ka)
(d) f(x)={a−∣x∣∣x∣≤a0∣x∣>a f(x) = \begin{cases} a - |x| & |x| \leq a \\ 0 & |x| > a \end{cases} f(x)={a−∣x∣0∣x∣≤a∣x∣>a
由于 f(x) f(x) f(x) 是偶函数,
f^(k)=2∫0a(a−x)cos(kx)dx
\hat{f}(k) = 2 \int_{0}^{a} (a - x) \cos(k x) dx
f^(k)=2∫0a(a−x)cos(kx)dx
计算积分:
∫0a(a−x)cos(kx)dx=1−cos(ka)k2
\int_{0}^{a} (a - x) \cos(k x) dx = \frac{1 - \cos(k a)}{k^2}
∫0a(a−x)cos(kx)dx=k21−cos(ka)
所以,
f^(k)=2⋅1−cos(ka)k2=2(1−cos(ka))k2
\hat{f}(k) = 2 \cdot \frac{1 - \cos(k a)}{k^2} = \frac{2 (1 - \cos(k a))}{k^2}
f^(k)=2⋅k21−cos(ka)=k22(1−cos(ka))
所以,
f^(k)=2(1−cos(ka))k2
\boxed{\hat{f}(k) = \frac{2 (1 - \cos(k a))}{k^2}}
f^(k)=k22(1−cos(ka))
(e) f(x)={a2−x2∣x∣≤a0∣x∣>a f(x) = \begin{cases} a^2 - x^2 & |x| \leq a \\ 0 & |x| > a \end{cases} f(x)={a2−x20∣x∣≤a∣x∣>a
由于 f(x) f(x) f(x) 是偶函数,
f^(k)=2∫0a(a2−x2)cos(kx)dx
\hat{f}(k) = 2 \int_{0}^{a} (a^2 - x^2) \cos(k x) dx
f^(k)=2∫0a(a2−x2)cos(kx)dx
计算积分:
∫0a(a2−x2)cos(kx)dx=2k3[sin(ka)−kacos(ka)]
\int_{0}^{a} (a^2 - x^2) \cos(k x) dx = \frac{2}{k^3} \left[ \sin(k a) - k a \cos(k a) \right]
∫0a(a2−x2)cos(kx)dx=k32[sin(ka)−kacos(ka)]
所以,
f^(k)=2⋅2k3[sin(ka)−kacos(ka)]=4k3[sin(ka)−kacos(ka)]
\hat{f}(k) = 2 \cdot \frac{2}{k^3} \left[ \sin(k a) - k a \cos(k a) \right] = \frac{4}{k^3} \left[ \sin(k a) - k a \cos(k a) \right]
f^(k)=2⋅k32[sin(ka)−kacos(ka)]=k34[sin(ka)−kacos(ka)]
所以,
f^(k)=4k3[sin(ka)−kacos(ka)]
\boxed{\hat{f}(k) = \frac{4}{k^3} \left[ \sin(k a) - k a \cos(k a) \right]}
f^(k)=k34[sin(ka)−kacos(ka)]
(f) 使用 (a) 计算 ∫−∞∞sin(x)xdx \int_{-\infty}^{\infty} \frac{\sin(x)}{x} dx ∫−∞∞xsin(x)dx
从 (a) 知,当 f(x)={1∣x∣≤a0∣x∣>a f(x) = \begin{cases} 1 & |x| \leq a \\ 0 & |x| > a \end{cases} f(x)={10∣x∣≤a∣x∣>a 时,f^(k)=2sin(ka)k \hat{f}(k) = \frac{2 \sin(k a)}{k} f^(k)=k2sin(ka).
利用傅里叶逆变换在 x=0 x = 0 x=0 处的值:
f(0)=12π∫−∞∞f^(k)eik⋅0dk=12π∫−∞∞2sin(ka)kdk
f(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(k) e^{i k \cdot 0} dk = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{2 \sin(k a)}{k} dk
f(0)=2π1∫−∞∞f^(k)eik⋅0dk=2π1∫−∞∞k2sin(ka)dk
由于 f(0)=1 f(0) = 1 f(0)=1,有:
1=12π∫−∞∞2sin(ka)kdk
1 = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{2 \sin(k a)}{k} dk
1=2π1∫−∞∞k2sin(ka)dk
即:
∫−∞∞sin(ka)kdk=π
\int_{-\infty}^{\infty} \frac{\sin(k a)}{k} dk = \pi
∫−∞∞ksin(ka)dk=π
令 u=ka u = k a u=ka,则 dk=du/a dk = du / a dk=du/a,代入得:
∫−∞∞sin(u)udu=π
\int_{-\infty}^{\infty} \frac{\sin(u)}{u} du = \pi
∫−∞∞usin(u)du=π
所以,
∫−∞∞sin(x)xdx=π
\boxed{\int_{-\infty}^{\infty} \frac{\sin(x)}{x} dx = \pi}
∫−∞∞xsin(x)dx=π