当前位置: 首页 > news >正文

AI人工智能机器学习之聚类分析

1、概要

  本篇学习AI人工智能机器学习之聚类分析,以KMeans、AgglomerativeClustering、DBSCAN为例,从代码层面讲述机器学习中的聚类分析。

2、聚类分析 - 简介

聚类分析是一种无监督学习的方法,用于将数据集中的样本划分为不同的组(簇),使得同一组中的样本相似度较高,而不同组之间的样本相似度较低。

sklearn.cluster提供了多种聚类算法

  • K均值聚类(K-Means Clustering),最常用的聚类算法之一,通过迭代找到 K 个簇的中心,并将样本分配给离其最近的中心,从而形成 K 个簇。
  • 层次聚类(Agglomerative Clustering),通过构建一个树形结构(树状图)来表示数据的聚类过程,生成不同层次的聚类结果。
  • DBSCAN(基于密度的聚类),通过测量数据点的密度来识别簇,能够发现任意形状的簇,并且可以有效处理噪声。

本篇,以三个示例讲述聚类分析使用方法:

  • 示例1:对数据集进行K均值聚类分析
  • 示例2:对数据集进行层次聚类分析
  • 示例3:对数据集进行基于密度的聚类分析

本篇相关资料代码参见:AI人工智能机器学习相关知识资源及使用的示例代码

3、聚类分析

3.1、安装依赖

python安装机器学习库: pip install scikit-learn

3.2、示例1: 对数据集进行K均值聚类分析
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score

# 生成样本数据
X, y = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0)

# 创建 KMeans 模型
kmeans = KMeans(n_clusters=4, init='k-means++', max_iter=300, n_init='auto') 
kmeans.fit(X)

# 获取聚类结果
y_kmeans = kmeans.predict(X)

# 评估聚类效果 - 轮廓系数(Silhouette Score):衡量样本与其聚类的相似性。值范围在 [-1, 1] 之间,值越大表示聚类效果越好。
score = silhouette_score(X, y_kmeans)
print(f"Silhouette Score: {score:.3f}")

# 可视化结果
plt.scatter(X[:, 0], X[:, 1], c=y_kmeans, s=50, cmap='viridis')
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, alpha=0.75, marker='o')
plt.title("K-Means Clustering")
plt.show()

运行上述代码的输出:

Silhouette Score: 0.682   

在这里插入图片描述

参数释义:

  • n_clusters:指定要形成的簇的数量。
  • init:初始化簇中心的方法,常用的有 ‘k-means++’(默认)和 ‘random’。
  • max_iter:最大迭代次数。
  • n_init:运行算法的次数,选择最佳结果。
3.3、示例2:对数据集进行层次聚类分析
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics import silhouette_score

# 生成样本数据
X, y = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0)

# 创建层次聚类模型
agg_clustering = AgglomerativeClustering(n_clusters=4, metric='euclidean', linkage='ward',)
y_agg = agg_clustering.fit_predict(X)

# 评估聚类效果 - 轮廓系数(Silhouette Score):衡量样本与其聚类的相似性。值范围在 [-1, 1] 之间,值越大表示聚类效果越好。
score = silhouette_score(X, y_kmeans)
print(f"Silhouette Score: {score:.3f}")

# 可视化结果
plt.scatter(X[:, 0], X[:, 1], c=y_agg, s=50, cmap='viridis')
plt.title("Agglomerative Clustering")
plt.show()

运行上述代码的输出:

Silhouette Score: 0.682

在这里插入图片描述

参数释义:

  • n_clusters:指定要形成的簇的数量。
  • metric:计算样本之间距离的方式,常用的有 ‘euclidean’(欧氏距离)和 ‘manhattan’(曼哈顿距离)。
  • linkage:聚类的连接方式,常用的有 ‘ward’(默认)、‘complete’、‘average’ 和 ‘single’。
3.4、示例3:对数据集进行基于密度的聚类分析
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.cluster import DBSCAN
from sklearn.metrics import silhouette_score

# 生成样本数据
X, y = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0)

# 创建 DBSCAN 模型
dbscan = DBSCAN(eps=0.5, min_samples=5)
y_dbscan = dbscan.fit_predict(X)

# 评估聚类效果 - 轮廓系数(Silhouette Score):衡量样本与其聚类的相似性。值范围在 [-1, 1] 之间,值越大表示聚类效果越好。
score = silhouette_score(X, y_kmeans)
print(f"Silhouette Score: {score:.3f}")

# 可视化结果
plt.scatter(X[:, 0], X[:, 1], c=y_dbscan, s=50, cmap='viridis')
plt.title("DBSCAN Clustering")
plt.show()

运行上述代码的输出:

Silhouette Score: 0.682

在这里插入图片描述

参数释义:

  • eps:指定形成簇的最大距离(邻域的半径)。
  • min_samples:形成一个簇所需的最小样本数。

4、 总结

本篇以KMeans、AgglomerativeClustering、DBSCAN为例,从代码层面讲述机器学习中的聚类分析,同时使用轮廓系数评估了聚类效果。每种算法都有其独特的优缺点,适用于不同类型的数据集。在实际应用中,选择合适的聚类算法和优化参数是获得良好聚类效果的关键。通过可视化和评估指标,可以更好地理解聚类结果的质量。

相关文章:

  • HONOR荣耀MagicBook 15 2021款 独显(BOD-WXX9,BDR-WFH9HN)原厂Win10系统
  • MOM成功实施分享(七)电力电容制造MOM工艺分析与解决方案(第一部分)
  • 如何修改安全帽/反光衣检测AI边缘计算智能分析网关V4的IP地址?
  • win11编译pytorchaudio cuda128版本流程
  • 2020 年英语(一)考研真题 笔记(更新中)
  • Grok3使用体验与模型版本对比分析
  • /ɪ/音的字母或字母组合的单词
  • 金融支付行业技术侧重点
  • DeepSeek开源技术全景解析:从硬件榨取到AI民主化革命
  • 筑牢安全防线:工商业场所燃气泄漏防护新方案
  • Spring的构造注入
  • 我的世界1.20.1forge模组开发进阶物品(7)——具有动画、3D立体效果的物品
  • CES Asia 2025聚焦量子计算,多领域进展引关注
  • 网络流算法: 最大流算法
  • Vue常用Excel导出工具SheetJS
  • 配置Spring Boot中的Jackson序列化
  • python实战项目58:采集蜻蜓FM热门音频top排行榜
  • DeepSeek后训练:监督微调和强化学习
  • WebGL 渲染器 WebGLRenderer
  • 从0-1学习Mysql第九章: 分区与分库分表
  • 网站建设_网站设计 app制作/全媒体运营师报考条件
  • 新手学做网站教程/营销策划的六个步骤
  • 深圳网站建设与推广/torrentkitty磁力官网
  • 做相册的网站 ppt/云优化seo软件
  • 益阳一站式网站建设公司/网络推广运营公司
  • 有没有免费网站制作/百度网站排名优化