当前位置: 首页 > news >正文

10.【线性代数】—— 四个基本子空间

讨论矩阵 A m ∗ n A_{m*n} Amn的四个基本空间,m行 n列

1. 列空间 C ( A ) C(A) C(A) in R m R^m Rm

[ c o l 11 c o l 21 . . . c o l n 1 c o l 12 c o l 22 . . . c o l n 2 . . . . . . . . . . . . c o l 1 m c o l 23 . . . c o l n m ] ⏟ A [ a b . . . c ] ⏟ x = a ∗ c o l 1 + b ∗ c o l 2 + . . . + c ∗ c o l n \underbrace{\begin{bmatrix} col_{11}&col_{21}&...&col_{n1}\\ col_{12}&col_{22}&...&col_{n2}\\ ...&...&...&...\\ col_{1m}&col_{23}&...&col_{nm} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} a\\b\\...\\c \end{bmatrix}}_{x} =a*col_1+b*col_2+...+c*col_n A col11col12...col1mcol21col22...col23............coln1coln2...colnm x ab...c =acol1+bcol2+...+ccoln
其中 c o l 1 = [ c o l 11 c o l 12 . . . c o l 1 m ] col_1 = \begin{bmatrix} col_{11}\\ col_{12}\\ ...\\ col_{1m} \end{bmatrix} col1= col11col12...col1m ,表示矩阵 A m ∗ n A_{m*n} Amn的第一列。因为一行有m个元素,所以在 R m R^m Rm空间中
将矩阵的每一列,看成一个向量,他们的所有线性组合(数乘和加法)在一个子空间中,这个子空间,记为 C(A),即A的列空间。
维度为矩阵的秩,记 r r r

2. 零空间 N ( A ) N(A) N(A) in R n R^n Rn

矩阵A的零空间 :满足 Ax =0 的所有向量。
由之前的知识,矩阵 A A A,可以化简为 [ I F 0 0 ] \begin{bmatrix} I&F\\0&0 \end{bmatrix} [I0F0],得出零空间为 N ( A ) = N ( R ) = [ − F I ] N(A)=N(R)=\begin{bmatrix} -F\\I \end{bmatrix} N(A)=N(R)=[FI]

由于 A 一行有 n 个元素,所以 N ( A ) 一列有 n 个元素,所以 N ( A ) 在 R n 空间 由于A一行有n个元素,所以N(A)一列有n个元素,所以N(A) 在 R^n 空间 由于A一行有n个元素,所以N(A)一列有n个元素,所以N(A)Rn空间
维度=自由列的个数= n − r n-r nr

3. 行空间 C ( A T ) C(A^T) C(AT) in R n R^n Rn

矩阵 A A A的行空间 = 矩阵 A T A^T AT的列空间

之前进行矩阵消元时,矩阵 A A A化简得到矩阵 R = [ I F 0 0 ] R=\begin{bmatrix} I&F\\0&0 \end{bmatrix} R=[I0F0]
矩阵 R 的列空间 C ( R ) ≠ C ( A ) 矩阵 R的列空间 C(R)\neq C(A) 矩阵R的列空间C(R)=C(A),但两者的行空间相同。
维度为 r r r

4. 左零空间 N ( A T ) N(A^T) N(AT) in R m R^m Rm

由于
A T y = 0 ⇒ 两遍求转置 y T A T T = 0 ⇒ y T A ⏟ 左乘 = 0 A^Ty = 0 \xRightarrow{两遍求转置} y^T{A^T}^T = 0 \xRightarrow{} \underbrace{y^TA}_{\text{左乘}} = 0 ATy=0两遍求转置 yTATT=0 左乘 yTA=0
所以 N ( A T ) N(A^T) N(AT)称矩阵A的左零空间。
维度为 m − r m-r mr

综述

空间 C ( A ) C(A) C(A) C ( A T ) C(A^T) C(AT) N ( A ) N(A) N(A) N ( A T ) N(A^T) N(AT)
主列-特殊解-
维度 r r r r r r n − r n-r nr m − r m-r mr
性质行空间与列空间维度相同,行秩=列秩

在这里插入图片描述

5. 新的向量空间

所有3x3的矩阵( M M M)
M M M的子空间: 所有上三角矩阵|| 对称矩阵|| 对角矩阵

子空间:满足其矩阵的线性组合(数乘、加减)都在其空间内

相关文章:

  • GC垃圾回收介绍及GC算法详解
  • python -ssh学习
  • dify接入语音转文本模型后报错: microphone not authorized
  • C++ 变量的输入输出教程
  • 智科技赋能宠物关怀新时代
  • 纯代码实战--用Deepseek+SQLite+Ollama搭建数据库助手
  • 微信小程序自定义导航栏实现指南
  • vscode使用豆包MARSCode----集成doubao1.5 DeepSeekR1 DeepseekV3模型的ai编程插件
  • 【Go | 从0实现简单分布式缓存】-3:分布式节点通信
  • DeepSeek模型认识:R1V3
  • 密码学(哈希函数)
  • 结构型模式---享元模式
  • CT技术变迁史——CT是如何诞生的?
  • HTTP学习——————(四)TLS等加密算法
  • 哪些因素会导致痉挛性斜颈
  • Muvera模型理论保证的证明
  • Cursor AI编程-详细教程
  • 1-7makefile
  • Graphics View画一个可调速的风机(pyqt)
  • 经典算法 最多约数问题
  • 今日国际新闻最新消息大事/seo日常工作都做什么的
  • 北京哪里有专门做网站的地方/寻找客户资源的网站
  • 室内装修设计资质/seo软件工具箱
  • 女生做网站前台/郑州seo排名优化公司
  • 网站的落地页/360网站安全检测
  • 网站改域名审核时间/seo技术快速网站排名