当前位置: 首页 > news >正文

jsp网站开发实例工作服定制电话

jsp网站开发实例,工作服定制电话,制作网站的公司有哪些,石龙网站建设为了求解损失函数 对 的导数,并利用最小二乘法向量形式求解 的值‌ 这是‌线性回归‌的平方误差损失函数,目标是最小化预测值 与真实值 之间的差距。 ‌损失函数‌: 考虑多个样本的情况,损失函数为所有样本的平方误差之和&a…

为了求解损失函数 loss = (f(x)-y)^2 = (wx-y)^2对 w 的导数,并利用最小二乘法向量形式求解 w 的值‌

这是‌线性回归‌的平方误差损失函数,目标是最小化预测值 X_w 与真实值 y 之间的差距。

损失函数‌:
考虑多个样本的情况,损失函数为所有样本的平方误差之和:

L = (Xw-Y)^2

                      =( X w-Y )^{\top} ( X w-Y )

                                                         =w^{\mathsf{T}} X^{\mathsf{T}} X w-Y^{\mathsf{T}} X w-w^{\mathsf{T}} X^{\mathsf{T}} Y+Y^{\mathsf{T}} Y

  • L 是损失函数
  • X 是 n\times m 的设计矩阵(n个样本,m个特征)。
  • w是 m\times 1 的权重向量。
  • Y是 n\times 1 的目标值向量。
  • 对于两个列向量\partialb,它们的点积(内积)就是\partial ^Tb,  \partial ^T是向量 \partial 的转置

针对 f(x) =w^{\mathsf{T}} X^{\mathsf{T}} X w-Y^{\mathsf{T}} X w-w^{\mathsf{T}} X^{\mathsf{T}} Y+Y^{\mathsf{T}} Y函数求导,有一下性质:

\frac{\partial AB}{\partial B} = A^T,\frac{\partial A^TB}{\partial A} = B,\frac{\partial C^TAC}{\partial C} = 2AC

对每项求导 
 第一项   w^{\mathsf{T}} X^{\mathsf{T}} X w

        将 \frac{\partial C^TAC}{\partial C} = 2AC 公式代入得

        X^T \cdot w^T X w  \Rightarrow  X^T\cdot 2AC \Rightarrow 2X^TXw

        w^{\mathsf{T}} X^{\mathsf{T}} X w  = 2X^TXw

        其中  w^T  为 C^TX 为 Aw 为 c

第二项  Y^{\mathsf{T}} X w

        将 \frac{\partial AB}{\partial B} = A^T 公式代入得

       Y^{\mathsf{T}} X \cdot w\Rightarrow A^T \Rightarrow (Y^{\mathsf{T}} X)^T

         Y^{\mathsf{T}} X w = (Y^{\mathsf{T}} X)^T

        其中 Y^{\mathsf{T}} X 为 A,w 为 B

第三项 w^{\mathsf{T}} X^{\mathsf{T}} Y

        将 \frac{\partial A^TB}{\partial A} = B 代入得

        w^{\mathsf{T}} \cdot X^{\mathsf{T}} Y\Rightarrow B\Rightarrow X^{\mathsf{T}} Y

        w^{\mathsf{T}} X^{\mathsf{T}} Y = X^{\mathsf{T}} Y

        其中 w^T 为 A^T,X^{\mathsf{T}} Y 为 B

第四项 没有 w 看作常数项 常数项的导数为0
合并项得

        f(x) =w^{\mathsf{T}} X^{\mathsf{T}} X w-Y^{\mathsf{T}} X w-w^{\mathsf{T}} X^{\mathsf{T}} Y+Y^{\mathsf{T}} Y

     = 2X^TXw-(Y^{\mathsf{T}} X)^T-X^{\mathsf{T}} Y+0

=2X^TXw-X^{\mathsf{T}} Y-X^{\mathsf{T}} Y         

=2X^TXw-2X^{\mathsf{T}} Y                      

=2(X^TXw-X^{\mathsf{T}} Y)                     

 令 \frac{\partial f(w)}{\partial w} = 0,得

 2(X^TXw-X^{\mathsf{T}} Y) = 0

X^TXw=X^{\mathsf{T}} Y

(X^TX)^{-1}X^TXw=(X^TX)^{-1}X^{\mathsf{T}} Y (X^TX 可逆时)

w=(X^TX)^{-1}X^{\mathsf{T}} Y

(X^TX)(X^TX)^{-1}互为逆矩阵  (X^TX)(X^TX)^{-1} = 1

得出结果
   w=(X^TX)^{-1}X^{\mathsf{T}} Y

解释:

(X^TX)(X^TX)^{-1} = 1,(X^TX)(X^TX)^{-1}互逆

逆矩阵的定义

如果 B是 A的逆矩阵,则满足:

AB=BA=I(单位矩阵 类似于数值乘法中的 1)

 即无论 A左乘还是右乘 B,结果均为单位矩阵。

必要条件 

AB必须是方阵(行数=列数)

A必须可逆,矩阵的行列式不为零(即行列式 det(A) \neq 0

直观理解

 逆矩阵的作用类似于“倒数”。例如,数值中 2\times \frac{1}{2} = 1,类似地,矩阵中 A\times A^{-1} = I

单位矩阵 I在矩阵乘法中的作用类似于数值乘法中的 1。

示例验证

取矩阵 A=\begin{bmatrix} 1 & 2 \\ 3& 4 \end{bmatrix},其行列式det(A) = -2 \neq 0,故可逆。

计算逆矩阵:

A^{-1} = \frac{1}{det(A)}\begin{bmatrix} 4 &-2 \\ -3& 1 \end{bmatrix}= \frac{1}{-2}\begin{bmatrix} 4 &-2 \\ -3& 1 \end{bmatrix}= \begin{bmatrix} -2 &1 \\ \frac{3}{2}& -\frac{1}{2} \end{bmatrix}

(1) 第一行第一列的元素 (C_{11}​)

C_{11}=\frac{1}{-2}\times 4=-2

(2) 第一行第二列的元素 (C_{12}​)

C_{12}=\frac{1}{-2}\times -2 = 1

(3) 第一行第二列的元素 (C_{21}​)

C_{21}=\frac{1}{-2}\times -3 = \frac{3}{2}

(4) 第一行第二列的元素 (C_{22}​)

C_{22}=\frac{1}{-2}\times 1 =- \frac{1}{2}

 

http://www.dtcms.com/a/426101.html

相关文章:

  • 网站源码破解版事业单位微信公众号怎么创建
  • 婚纱礼服外贸网站如何注册品牌名称和商标
  • icp备案网站用不了wordpress 小工具插件
  • 美妆网站建设方案涿州网站建设涿州
  • 中建八局第一建设有限公司董事长seo优化与推广招聘
  • aws的efs可以做网站的什么哪些外贸网站可以做soho
  • 建站之星模板的使用大连网络设计有限公司
  • 网站新闻 写法wap手机网站开发asp经验
  • 外贸网站 万网通知模板范文
  • 山西建立网站营销策划企业网站优化多少钱
  • 网站内页收录wordpress的主题下载
  • 建网站的公司不肯签合同企业如何创建网站
  • asp网站开发视频开发微信小程序收费
  • 山东省建设工程质量监督网站瓜子网网站建设策划书
  • 网站运行及维护火车头发布wordpress
  • 网站代理怎么赚钱番禺 网站建设
  • 济南网站建设 找小七h5开发招聘
  • 企业网站建设程序开广告店一年利润多少
  • flash网站大全网站设计在线培训
  • 做网站南充vs和php哪个做网站好
  • 网站建设吕凡科技移动端企业网站模板
  • 哪个网站可以做自由行地图wordpress采集插件怎么用
  • 网站打开空白 重启iis就好了百度指数查询
  • 湛江专业做网站想在网站上放百度广告怎么做
  • 外贸网站建设哪家好黄山网站设计
  • 网站策划书包括哪些内容?wordpress 福利模板
  • 怎么制作网站论坛模板湖北交投建设集团集团网站
  • 小说网站建设笺池斋免费外贸网站制作
  • 做网站主要步骤做外贸在哪个平台比较好
  • vs怎样建设新网站那个企业建网站好