当前位置: 首页 > news >正文

Further inference in the multiple linear regression model

Joint hypothesis testing

image.png

  • Simple null hypothesis → involves a restriction on one sign (<,=,>) only (e.g.H0:β2=0).(e.g. H_0: \beta_2 = 0).(e.g.H0:β2=0).

  • Joint null hypothesis → involves two or more restrictions at the same time (e.g.H0:β2=0,  β3=0,  β4=0).(e.g.H_0: \beta_2 = 0, \; \beta_3 = 0, \; \beta_4 = 0).(e.g.H0:β2=0,β3=0,β4=0).

Testing the effect of advertising: The F-test

image.png
image.png

restricted model : βi=0\beta_{i}=0βi=0

  • An unrestricted model is the “full” regression specification, where you estimate all parameters freely without imposing any restrictions. For example, if your regression is
    y=β0+β1x1+β2x2+β3x3+uy = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + uy=β0+β1x1+β2x2+β3x3+u

    then the unrestricted model estimates β0,β1,β2,β3β0,β1,β2,β3β0,β1,β2,β3 all at once.

  • A restricted model is the version of the model after you impose the null hypothesis restrictions. For instance, if
    H0:β2=β3=0H_0: \beta_2 = \beta_3 = 0H0:β2=β3=0

    then the restricted model reduces to
    y=β0+β1x1+uy = \beta_0 + \beta_1 x_1 + uy=β0+β1x1+u

    because the restrictions eliminate x2x_2x2 and x3x_3x3 from the regression.

Testing the overall significance of the model

image.png

t-test and F-test

image.png
image.png

More general F-tests

image.png
image.png

  • The F-test is the standard way to test any set of linear restrictions, not just “all equal to zero.”

  • Here the restriction links two parameters (β3\beta_3β3 and β4)β_{4})β4) together. That means you cannot just look at a single t-statistic — the test requires accounting for covariance between estimators.

  • The F-test compares restricted model vs. unrestricted model fit:

    • Unrestricted model: estimate β3,β4\beta_3, \beta_4β3,β4 freely.

    • Restricted model: force β3=1−3.8β_{3}=1−3.8β3=13.8

What “restricted model” really means

  • The restricted model is any regression model you get after imposing the null hypothesis.

  • If the null says βj=0\beta_j = 0βj=0, then yes: the restricted model is simply dropping that variable.

  • But in general, the null may say something else, e.g.
    β3+3.8β4=1\beta_3 + 3.8\beta_4 = 1β3+3.8β4=1
    That is not a zero restriction, but it’s still a restriction on parameters.

So: restricted model ≠ only β=0. Instead, it means “the model under the null hypothesis.”

Why substitution is needed

When the null hypothesis involves a linear combination (like β3+3.8β4=1:\beta_3 + 3.8\beta_4 = 1:β3+3.8β4=1:

  • You cannot just delete regressors, because neither β3​\beta_3​β3nor β4​\beta_4​β4 is zero.

  • Instead, the restriction ties them together, so one becomes dependent on the other.

  • To build the restricted model, you must substitute that relationship back into the regression equation.

That’s why in your KFC example, they replaced β3​\beta_3​β3 with 1−3.8β4​1−3.8β_{4}​13.8β4.

Substitution is exactly the way to re-express the restricted model so it still looks like a valid regression:

http://www.dtcms.com/a/395370.html

相关文章:

  • Turtlebot: 开源机器人开发平台 SLAM硬件搭建(激光雷达+IMU+相机+移动底盘)
  • Java 线程的几种状态
  • 在线ps修改图片中的文字
  • Hadoop 保姆级搭建手册:突出教程的细致和易上手
  • 使用gsettings修改命令ubuntu快捷键
  • Linux线程互斥与同步
  • 【AI扣子生成测试用例】自动生成测试用例工作流
  • Hive建表实战
  • Ethernaut Level 5: Token - 整数下溢攻击详解
  • 正向代理 vs 反向代理
  • SNN论文阅读——spikformer
  • 【论文阅读】Robix:机器人交互、推理与规划的统一模型
  • 【论文阅读】AutoDrive-R^2: 激励自动驾驶VLA模型的推理与自我反思能力
  • [UnrealEngine] 虚幻引擎UE5下载及安装(UE4、UE5)
  • AI原生安全架构的提出与落地路径:来自南凌科技的实践观察
  • ELK企业级日志分析系统
  • EasyDSS一站式点播方案如何提升企业视频门户的用户体验?
  • MARSIM仿真平台部署安装及FUEL部署-Ubuntu20.04
  • 16-留言板案例
  • ubuntu22.04配置ip
  • VMware ubuntu开机后黑屏
  • ubuntu运行项目:音乐解锁-unlock-music-master,安装依赖报错问题
  • vim操作
  • 【AI编程】四大规范驱动开发Spec工具助力AI编程从“即兴创作“向“工程化“转变
  • IDEA中print(“)输出中文乱码
  • 一站式报修软件:破解高校、物业等机构报修难题的高效方案
  • mobaxterm解决无法在vim中复制
  • 深度解析 CUDA-QX 0.4 加速 QEC 与求解器库
  • 深度解析通义DeepResearch:阿里开源的300亿参数深度研究智能体
  • 关于OpenCV无法进行h264视频转码的问题