当前位置: 首页 > news >正文

LeetCodehot 力扣热题100 全排列

这段代码的目的是计算给定整数数组的所有全排列(permutations),并返回一个包含所有排列的二维数组。

思路解析

在这段代码中,采用了 深度优先搜索(DFS)回溯 的方法来生成所有的排列。

关键步骤:

1. 回溯:我们通过交换数组中的元素,将数组的每个元素依次放置到每个位置,生成所有的排列组合。

2. 递归:每次递归处理当前索引位置的元素,继续处理下一个位置,直到递归到数组的末尾,表示完成一个排列。

3. 交换回溯:在每次递归后,通过交换操作还原数组的顺序,避免对后续递归产生影响。

代码解析


class Solution {

public:

    vector<vector<int>> ans;  // 用于存储所有的排列

    vector<vector<int>> permute(vector<int>& nums) {

        dfs(nums, 0);  // 从数组的第一个位置开始深度优先搜索

        return ans;  // 返回所有的排列

    }



    void dfs(vector<int>& nums, int n) {

        // 如果当前的索引等于数组的长度,说明已经形成了一个排列

        if (n == nums.size()) {

            ans.push_back(nums);  // 将当前排列加入结果集中

            return;

        }



        // 遍历当前索引位置后的所有元素

        for (int i = n; i < nums.size(); i++) {

            swap(nums[i], nums[n]);  // 将第 i 个元素与第 n 个元素交换

            dfs(nums, n + 1);  // 递归处理下一个位置

            swap(nums[i], nums[n]);  // 交换回去,恢复原数组状态(回溯)

        }

    }

};

详细注释

1. vector<vector<int>> ans;:

• 用于存储所有的排列组合。

2. vector<vector<int>> permute(vector<int>& nums):

• permute 是主函数,接受一个整数数组 nums 作为输入,返回一个包含所有排列的二维数组。

• dfs(nums, 0) 从 nums 的第 0 个位置开始深度优先搜索。

3. void dfs(vector<int>& nums, int n):

• dfs 是深度优先搜索的核心函数,负责递归生成排列。

• nums 是待排列的数组,n 是当前递归处理的索引位置。

4. if (n == nums.size()):

• 如果当前的索引 n 等于数组的大小,说明已经将所有元素排列完毕,形成了一个有效的排列。

• ans.push_back(nums) 将当前的排列(即 nums 数组的状态)加入结果集 ans。

5. for (int i = n; i < nums.size(); i++):

• 遍历当前索引 n 之后的每一个元素,通过交换生成不同的排列。

6. swap(nums[i], nums[n]);:

• 交换 nums[i] 和 nums[n],将 nums[i] 放到当前的位置 n。这样可以生成一个新的排列组合。

7. dfs(nums, n + 1):

• 递归调用 dfs,将处理下一个位置的元素。即当前元素已放置好,继续处理下一个索引。

8. swap(nums[i], nums[n]);:

• 交换回去,恢复原数组状态,这样可以进行下一轮的排列生成(即回溯)。这是为了确保后续的排列生成不会受到之前交换的影响。

好的,接下来我会详细地继续补充并完成整个 深度优先搜索(DFS)回溯 的运行步骤,直到所有排列都生成完毕。

输入数组:

nums = [1, 2, 3]

运行步骤:

我们通过 DFS 和回溯的方法生成 nums 数组的所有排列。

初始状态:

• 输入:nums = [1, 2, 3]

• ans = [](最终存储所有排列的结果)

第 1 层递归:n = 0 (处理第一个位置)

• 当前节点的起始值是 nums = [1, 2, 3],n = 0,遍历 i = 0 到 i = 2。

1. 第 1 次交换:swap(nums[0], nums[0]),数组未变,仍为 [1, 2, 3]。

• 递归调用 dfs(nums, 1),进入处理第二个位置。

第 2 层递归:n = 1 (处理第二个位置)

• 当前节点的起始值是 nums = [1, 2, 3],n = 1,遍历 i = 1 到 i = 2。

1. 第 1 次交换:swap(nums[1], nums[1]),数组未变,仍为 [1, 2, 3]。

• 递归调用 dfs(nums, 2),进入处理第三个位置。

第 3 层递归:n = 2 (处理第三个位置)

• 当前节点的起始值是 nums = [1, 2, 3],n = 2,遍历 i = 2 到 i = 2(只剩下一个位置)。

1. 第 1 次交换:swap(nums[2], nums[2]),数组未变,仍为 [1, 2, 3]。

• 递归调用 dfs(nums, 3),这时 n == nums.size(),说明当前排列已经完成。

2. 将 [1, 2, 3] 加入到 ans 中。

• ans = [[1, 2, 3]]

回溯:恢复状态

• 交换回去,恢复原数组 [1, 2, 3]。

• 返回到 n = 1,继续处理 i = 2。

2. 第 2 次交换:swap(nums[1], nums[2]),数组变为 [1, 3, 2]。

• 递归调用 dfs(nums, 2),进入处理第三个位置。

第 3 层递归:n = 2 (处理第三个位置)

• 当前节点的起始值是 nums = [1, 3, 2],n = 2,遍历 i = 2 到 i = 2(只剩下一个位置)。

1. 第 1 次交换:swap(nums[2], nums[2]),数组未变,仍为 [1, 3, 2]。

• 递归调用 dfs(nums, 3),这时 n == nums.size(),说明当前排列已经完成。

2. 将 [1, 3, 2] 加入到 ans 中。

• ans = [[1, 2, 3], [1, 3, 2]]

回溯:恢复状态

• 交换回去,恢复原数组 [1, 3, 2]。

• 返回到 n = 1,恢复原数组 [1, 2, 3]。

• 返回到 n = 0,恢复原数组 [1, 2, 3]。

第 2 次交换:n = 0 (处理第一个位置)

3. 第 2 次交换:swap(nums[0], nums[1]),数组变为 [2, 1, 3]。

• 递归调用 dfs(nums, 1),进入处理第二个位置。

第 2 层递归:n = 1 (处理第二个位置)

• 当前节点的起始值是 nums = [2, 1, 3],n = 1,遍历 i = 1 到 i = 2。

1. 第 1 次交换:swap(nums[1], nums[1]),数组未变,仍为 [2, 1, 3]。

• 递归调用 dfs(nums, 2),进入处理第三个位置。

第 3 层递归:n = 2 (处理第三个位置)

• 当前节点的起始值是 nums = [2, 1, 3],n = 2,遍历 i = 2 到 i = 2(只剩下一个位置)。

1. 第 1 次交换:swap(nums[2], nums[2]),数组未变,仍为 [2, 1, 3]。

• 递归调用 dfs(nums, 3),这时 n == nums.size(),说明当前排列已经完成。

2. 将 [2, 1, 3] 加入到 ans 中。

• ans = [[1, 2, 3], [1, 3, 2], [2, 1, 3]]

回溯:恢复状态

• 交换回去,恢复原数组 [2, 1, 3]。

• 返回到 n = 2,继续处理 i = 2。

2. 第 2 次交换:swap(nums[1], nums[2]),数组变为 [2, 3, 1]。

• 递归调用 dfs(nums, 2),进入处理第三个位置。

第 3 层递归:n = 2 (处理第三个位置)

• 当前节点的起始值是 nums = [2, 3, 1],n = 2,遍历 i = 2 到 i = 2(只剩下一个位置)。

1. 第 1 次交换:swap(nums[2], nums[2]),数组未变,仍为 [2, 3, 1]。

• 递归调用 dfs(nums, 3),这时 n == nums.size(),说明当前排列已经完成。

2. 将 [2, 3, 1] 加入到 ans 中。

• ans = [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1]]

回溯:恢复状态

• 交换回去,恢复原数组 [2, 3, 1]。

• 返回到 n = 1,恢复原数组 [2, 1, 3]。

• 返回到 n = 0,恢复原数组 [1, 2, 3]。

第 3 次交换:n = 0 (处理第一个位置)

4. 第 3 次交换:swap(nums[0], nums[2]),数组变为 [3, 2, 1]。

• 递归调用 dfs(nums, 1),进入处理第二个位置。

第 2 层递归:n = 1 (处理第二个位置)

• 当前节点的起始值是 nums = [3, 2, 1],n = 1,遍历 i = 1 到 i = 2。

1. 第 1 次交换:swap(nums[1], nums[1]),数组未变,仍为 [3, 2, 1]。

• 递归调用 dfs(nums, 2),进入处理第三个位置。

第 3 层递归:n = 2 (处理第三个位置)

• 当前节点的起始值是 nums = [3, 2, 1],n = 2,遍历 i = 2 到 i = 2(只剩下一个位置)。

1. 第 1 次交换:swap(nums[2], nums[2]),数组未变,仍为 [3, 2, 1]。

• 递归调用 dfs(nums, 3),这时 n == nums.size(),说明当前排列已经完成。

2. 将 [3, 2, 1] 加入到 ans 中。

• ans = [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 2, 1]]

回溯:恢复状态

• 交换回去,恢复原数组 [3, 2, 1]。

• 返回到 n = 2,恢复原数组 [3, 2, 1]。

• 返回到 n = 1,恢复原数组 [3, 2, 1]。

• 返回到 n = 0,恢复原数组 [1, 2, 3]。

最终结果

最终生成的排列 ans 中包含了所有可能的排列:

ans = [[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 2, 1], [3, 1, 2]]

总结

1. DFS 遍历:通过递归逐个处理每个位置,生成所有可能的字符组合。

2. 回溯:通过交换和恢复数组状态,确保生成所有排列。

3. 最终生成了所有的排列,并存储在 ans 中。

这样,我们使用回溯和 DFS 的方法成功计算出了所有的排列,并保存在 ans 数组中。

相关文章:

  • 《Keras 3 使用 PointNet 进行点云分类》:此文为AI自动翻译
  • Ubuntu指令(一)
  • SVT-AV1接入ffmpeg说明
  • SSM和SpringBoot有什么区别?
  • Spring 框架学习笔记:从零到精通的 21 个关键点
  • pyautogui库的screenshot()函数
  • python poetry添加某个git仓库的某个分支
  • 学习FreeRTOS推荐几篇质量高的文章
  • 6. grafana的graph简介
  • Android Realm数据库使用与集成指南
  • el-form中使用el-select,下拉框出现错位
  • 【Kimi】自动生成PPT-并支持下载和在线编辑--全部免费
  • 【我的 PWN 学习手札】IO_FILE 之 劫持vtable到_IO_str_jumps
  • LeetCode - 24 两两交换链表中的节点
  • PHP入门基础学习七(函数3)
  • WIn32 笔记:本专栏课件
  • Oracle管理员高级操作的详细步骤说明,涵盖性能优化、安全管理、高可用性配置等核心内容
  • Halcon 3D加快表面匹配速度
  • [深度学习]基于C++和onnxruntime部署yolov12的onnx模型
  • Git add --- error: Filename too long
  • 浙江省台州市政协原副主席林虹被“双开”
  • 腾讯一季度净利增14%:AI直接拉动广告收入增长,王者荣耀流水创新高
  • 一图看懂|印巴交火后,双方基地受损多少?
  • 陈吉宁龚正黄莉新胡文容等在警示教育基地参观学习,出席深入贯彻中央八项规定精神学习教育交流会
  • 外企聊营商|特雷通集团:税务服务“及时雨”
  • 广东省原省长卢瑞华逝世,享年88岁