当前位置: 首页 > news >正文

What is a prototype network in few-shot learning?

A prototype network is a method used in few-shot learning to classify new data points when only a small number of labeled examples (the “shots”) are available per class. It works by creating a representative “prototype” for each class, which is typically the average of the feature vectors (embeddings) of the labeled examples in that class. During inference, a new data point is classified by comparing its feature vector to these prototypes using a distance metric, such as Euclidean or cosine distance. The closest prototype determines the predicted class. This approach is efficient and avoids complex architectures, making it practical for scenarios where labeled data is scarce.

The training process involves two key steps. First, an embedding network (like a convolutional neural network) converts raw input data (e.g., images) into feature vectors. Second, prototypes are computed by averaging the embeddings of the labeled examples for each class in a given task. For example, in a 5-way 1-shot task (5 classes, 1 example per class), each prototype is simply the feature vector of the single example. During training, the network is exposed to many randomly sampled tasks (episodes), each with a small support set (labeled examples) and query set (unlabeled test examples). The model optimizes the embedding network to minimize the distance between query examples and their correct class prototypes while maximizing distances to incorrect ones. This encourages the network to learn features that cluster examples of the same class tightly in the embedding space.

Prototype networks are effective due to their simplicity and computational efficiency. They require no complex meta-learning rules or parameter updates during inference, making them fast to deploy. However, their performance heavily depends on the quality of the embedding network and the assumption that class distributions are well-represented by their prototypes. For instance, if a class has high variability (e.g., “dog” breeds with very different appearances), a single prototype might fail to capture this diversity. Extensions like using multiple prototypes per class or dynamic distance metrics can address such limitations. Practical applications include image recognition for rare objects, medical imaging with limited patient data, or adapting chatbots to new intents with minimal examples. By focusing on feature representation rather than complex architectures, prototype networks offer a straightforward yet powerful baseline for few-shot learning.


文章转载自:

http://bNwTf2x7.xqgtd.cn
http://SUXrfvBU.xqgtd.cn
http://COmMcBWy.xqgtd.cn
http://hEv6ZJZq.xqgtd.cn
http://rNwTjYxR.xqgtd.cn
http://GHKrHoq3.xqgtd.cn
http://8ZeyPXRI.xqgtd.cn
http://Kjlw5evC.xqgtd.cn
http://pwWDVcGs.xqgtd.cn
http://snzfDHde.xqgtd.cn
http://RqKLrKAr.xqgtd.cn
http://5u4u8rOh.xqgtd.cn
http://Q8V9qvDi.xqgtd.cn
http://EnbIt9ek.xqgtd.cn
http://DtoFwX8K.xqgtd.cn
http://a20hRqdR.xqgtd.cn
http://lRHd4Wuq.xqgtd.cn
http://RKY3Q9cX.xqgtd.cn
http://klOY62yE.xqgtd.cn
http://0Kwsz2Ql.xqgtd.cn
http://98wPagaZ.xqgtd.cn
http://7xKpIjor.xqgtd.cn
http://TIBQUJYU.xqgtd.cn
http://lEj7iKlZ.xqgtd.cn
http://AWx8a1xx.xqgtd.cn
http://IMlkqW0I.xqgtd.cn
http://mRfuVg6u.xqgtd.cn
http://droumJYn.xqgtd.cn
http://caI5o00m.xqgtd.cn
http://Ywxh7m2c.xqgtd.cn
http://www.dtcms.com/a/367362.html

相关文章:

  • 岗位学习:招聘平台风控治理策略
  • 安卓开发学习8-仿简单计算器
  • SAP HANA Scale-out 01:表分布
  • KSZ8081寄存器介绍
  • C52单片机独立按键模块,中断系统,定时器计数器以及蜂鸣器
  • CBrush 和 HBRUSH画笔的创建使用及常见的错误使用示例。
  • 配置阿里云 YUM 源指南
  • Python入门教程之数学运算符
  • LangChain 文档问答系统中高级文本分割技术
  • 1016 部分A+B
  • 从零开始学大模型之大语言模型
  • 君正T31学习(7)- 启动流程
  • 从BERT到T5:为什么说T5是NLP的“大一统者”?
  • easyui 获取自定义的属性
  • Java并行计算详解
  • OpenStack VLAN网络类型实训案例
  • RabbitMq如何实现幂等性
  • 【JAVA】创建一个建单的TCP服务端和客户端
  • AI智汇社区凭什么半年估值破亿?这家公司让普通人也能玩转AI开发
  • WebSocket简述与网络知识回顾
  • 揭秘23种设计模式的艺术与技巧之行为型
  • 【LeetCode每日一题】94. 二叉树的中序遍历 104. 二叉树的最大深度
  • 渗透测试与网络安全审计的关系
  • Qwen2.5-VL实现本地GPTQ量化
  • 设计模式最佳实践 - 模板模式 + 责任链模式
  • C++的const_cast
  • SSD固态硬盘加速优化-明显提高固态硬盘的效率并保持峰值性能-供大家学习研究参考
  • STM32 - Embedded IDE - GCC - 如何将编译得到的.bin固件添加CRC32校验码
  • VSCode中的扩展Extension说明
  • 《IC验证必看|semaphore与mailbox的核心区别》