当前位置: 首页 > news >正文

猫头虎开源AI分享|基于大模型和RAG的一款智能text2sql问答系统:SQLBot(SQL-RAG-QABot),可以帮你用自然语言查询数据库

猫头虎开源AI分享|基于大模型和RAG的一款智能text2sql问答系统:SQLBot(SQL-RAG-QABot),可以帮你用自然语言查询数据库

大家好,我是 猫头虎 🦉🐯。今天要和大家分享一款非常实用的智能问答数据库系统 —— SQLBot(SQL-RAG-QABot)

它的核心功能就是:
👉 把自然语言问题自动转成数据库能理解的 SQL 语句
👉 再去数据库里执行查询
👉 然后生成图表和分析结果

也就是说,你只需要一句话,就能把数据库里的数据“问”出来。是不是很酷?😎

在这里插入图片描述

而且 SQLBot 不仅仅是执行 SQL,还支持进一步的 分析、解释、验证和预测,还能把多个问答过程构造成一个数据看板,真正实现数据驱动的智能交互。

更重要的是,它 开箱即用:配置模型和数据源即可上手。还支持快速嵌入第三方业务系统,或者作为组件被 n8n、MaxKB、Dify、Coze 等 AI 平台调用。

猫头虎 fork 的 GitHub 项目地址:
🔗 https://github.com/MaoTouHU/SQL-RAG-QABot


SQLBot

基于大模型和 RAG 的智能问数系统

文章目录

  • 猫头虎开源AI分享|基于大模型和RAG的一款智能text2sql问答系统:SQLBot(SQL-RAG-QABot),可以帮你用自然语言查询数据库
    • 🚀 SQLBot 的优势
    • 🛠️ 快速开始
      • 1. 安装部署
      • 2. 访问方式
    • 💻 UI 展示
    • ⭐ Star History
    • 🐯 总结


🚀 SQLBot 的优势

SQLBot 是一款基于 大模型 + RAG(检索增强生成) 的智能 text2sql 系统,主要优势包括:

  • 开箱即用
    只需配置大模型和数据源即可开启问数之旅,结合 RAG 让 text2sql 更精准。

  • 易于集成
    轻松嵌入第三方业务系统,或者接入 n8n、MaxKB、Dify、Coze 等 AI 平台,让应用瞬间拥有智能问数能力。

  • 安全可控
    提供基于工作空间的资源隔离机制,支持细粒度的数据权限控制。


🛠️ 快速开始

1. 安装部署

准备一台 Linux 服务器,执行以下一键安装脚本。
在运行 SQLBot 前,请确保已安装好 Docker 和 Docker Compose。

# 创建目录
mkdir -p /opt/sqlbot
cd /opt/sqlbot# 下载 docker-compose.yaml
curl -o docker-compose.yaml https://raw.githubusercontent.com/dataease/SQLBot/main/docker-compose.yaml# 启动服务
docker compose up -d

当然,你也可以通过 1Panel 应用商店 一键部署,简单省心。


2. 访问方式

部署完成后,在浏览器中打开:

  • 👉 地址: http://<你的服务器IP>:8000/
  • 👉 默认用户名: admin
  • 👉 默认密码: SQLBot@123456

登录后即可进入可视化界面,像聊天一样向数据库提问。

GIF 效果演示图:
在这里插入图片描述


💻 UI 展示

下面是 SQLBot 的 Q&A 界面,可以看到,输入自然语言问题后,就会自动转成 SQL 并执行:

q&a

⭐ Star History

SQLBot 项目已经在 GitHub 上收获了不少 Star,未来也会不断更新。
如果你对 AI + 数据查询感兴趣,不妨点个 ⭐ 支持一下!


🐯 总结

SQLBot(SQL-RAG-QABot)是一款非常实用的 智能 text2sql 系统,能够帮助我们用自然语言直接查询数据库,并生成图表和数据分析。

  • 适合开发者、数据分析师、业务人员快速获取数据
  • 支持开箱即用 + 第三方集成
  • 同时兼顾易用性与安全性

未来,我会继续尝试基于 SQLBot 构建更智能的数据应用,甚至直接把它做成一个 AI 数据分析助理 🔥。

项目地址再次放上:
https://github.com/MaoTouHU/SQL-RAG-QABot


👆以上就是今天的分享,欢迎大家在评论区交流。
我是 猫头虎 🦉🐯,我们下篇博客见!


http://www.dtcms.com/a/341629.html

相关文章:

  • Three.js 初级教程大全
  • 分享|财务大数据实验室建设方案
  • 机器学习(Machine Learning, ML)
  • Web网站的运行原理2
  • Ubuntu实现程序开机自动运行
  • AI每日需求进度分析总结(附实战操作)
  • 云原生环境下的ITSM新趋势:从传统运维到智能化服务管理
  • 政务网站与新媒体自查情况的报告怎么写?
  • 【ssh】ssh免密登录配置【docker】
  • STM32_0001 KEILMDK V5.36 编译一个STM32F103C8T6说core_cm3.h文件找不到以及编译器版本不匹配的解决办法
  • 25_基于深度学习的行人检测识别系统(yolo11、yolov8、yolov5+UI界面+Python项目源码+模型+标注好的数据集)
  • 详解ThreadLocal<HttpServletRequest> requestThreadLocal
  • Kernel Study
  • 关联规则挖掘1:Apriori算法
  • Deepresearch Agents:下一代自动研究智能体的架构革命与产业实践
  • CAMEL-Task1-CAMEL环境配置及你的第一个Agent
  • postgreSQL卸载踩坑
  • Kolors Virtual Try-On:快手可图推出的AI虚拟换衣项目
  • JAVA中向量数据库(Milvus)怎么配合大模型使用
  • 简笔成画:让AI绘画变得简单而有趣
  • pyecharts可视化图表仪表盘_Gauge:从入门到精通
  • 【Linux】重生之从零开始学习运维之LVS
  • UUID(通用唯一标识符)详解和实践
  • 今日行情明日机会——20250820
  • K8S集群-基于Ingress资源实现域名访问
  • 软件测试面试题真题分享
  • 华为云之基于鲲鹏弹性云服务器部署openGauss数据库【玩转华为云】
  • VMware Workstation | 安装Ubuntu20.04.5
  • 红警国家的注册
  • Linux系统:管道通信