当前位置: 首页 > news >正文

Advanced Math Math Analysis |01 Limits, Continuous

Advanced Math & Math Analysis |01 Limits, Continuous

Note: For simple definitions and corollaries, we will not elaborate.

文章目录

  • Advanced Math & Math Analysis |01 Limits, Continuous
    • Some easy knowledge
      • Mathematical induction
      • Some equation of trigonometric function
      • Inequality
    • Limits of sequence
    • Continuity and Limits of Functions

Some easy knowledge

Mathematical induction

Theorem
Let T(n)T(n)T(n) is a proposition if:

(1) T(1)T(1)T(1) is true;

(2)let T(k)(k≥1)T(k)(k\ge 1)T(k)(k1) is true;

(3) prove: T(k+1)T(k+1)T(k+1)is true.

So T(n)T(n)T(n) is true.

Example

Let n≥1n\ge 1n1 and n∈Nn\in \mathbb{N}nN,prove

n!<(n+12)nn!< \left(\frac{n+1}{2}\right)^nn!<(2n+1)n

Proof

When n=2n = 2n=2, 2!=2<94=(2+12)22! = 2 < \frac{9}{4} = \left( \frac{2 + 1}{2} \right)^22!=2<49=(22+1)2, and the proposition holds.

Suppose the proposition holds when n=k(k≥2)n = k (k \geq 2)n=k(k2), that is, k!<(k+12)kk! < \left( \frac{k + 1}{2} \right)^k k!<(2k+1)k

When n=k+1n = k + 1n=k+1,

(k+1)!=k!(k+1)<(k+22⋅k+1k+2)k⋅(k+1)=(k+22)k⋅(k+1)k+1(k+2)k=(k+2)k+12k⋅(k+1k+2)k+1=2(k+22)k+1⋅1(k+2k+1)k+1=2(k+22)k+1⋅1(1+1k+1)k+1\begin{align*} (k + 1)!&= k!(k + 1)\\ &< \left( \frac{k + 2}{2} \cdot \frac{k + 1}{k + 2} \right)^k \cdot (k + 1)\\ &= \left( \frac{k + 2}{2} \right)^k \cdot \frac{(k + 1)^{k + 1}}{(k + 2)^k}\\ &= \frac{(k + 2)^{k + 1}}{2^k} \cdot \left( \frac{k + 1}{k + 2} \right)^{k + 1}\\ &= 2 \left( \frac{k + 2}{2} \right)^{k + 1} \cdot \frac{1}{\left( \frac{k + 2}{k + 1} \right)^{k + 1}}\\ &= 2 \left( \frac{k + 2}{2} \right)^{k + 1} \cdot \frac{1}{\left( 1 + \frac{1}{k + 1} \right)^{k + 1}} \end{align*} (k+1)!=k!(k+1)<(2k+2k+2k+1)k(k+1)=(2k+2)k(k+2)k(k+1)k+1=2k(k+2)k+1(k+2k+1)k+1=2(2k+2)k+1(k+1k+2)k+11=2(2k+2)k+1(1+k+11)k+11

By (1+x)n≥1+nx(1+x)^n\ge 1+nx(1+x)n1+nx,x∈(−1,+∞)x\in(-1,+\infty)x(1,+),n∈N+n\in \mathbb{N}_+nN+, we have

(1+1k+1)k+1>1+(k+1)⋅1k+1=2\left( 1 + \frac{1}{k + 1} \right)^{k + 1} > 1 + (k + 1) \cdot \frac{1}{k + 1} = 2 (1+k+11)k+1>1+(k+1)k+11=2 So (k+1)!<2(k+22)k+1⋅12=(k+22)k+1(k + 1)! < 2 \left( \frac{k + 2}{2} \right)^{k + 1} \cdot \frac{1}{2} = \left( \frac{k + 2}{2} \right)^{k + 1} (k+1)!<2(2k+2)k+121=(2k+2)k+1

Thus, when n=k+1n = k + 1n=k+1, the proposition holds. The proof is completed.

Some equation of trigonometric function

Inequality

Limits of sequence

Example Prove an open interval has no maximum value.

Proof

For any open continue interval (a,b)(a,b)(a,b) can be mapping to (0,1)(0,1)(0,1) , by

f:x−ab−af:\frac{x-a}{b-a}f:baxa

Suppose there exists a $\max {(0,1)} \stackrel{\scriptstyle\triangle}{=} \alpha $ ,we have

0<12α<12⇒12<α+12<1\begin{align*} &0< \frac{1}{2}\alpha <\frac{1}{2} \\ &\Rightarrow \frac{1}{2} < \frac{\alpha +1}{2} <1 \end{align*} 0<21α<2121<2α+1<1

Obviously,

α<α+12\alpha < \frac{\alpha +1}{2}α<2α+1

This contradicts the assumption, so the assumption is wrong.

Example Let T={x∣x∈Qand x>0,x2<2}T = \{ x \mid x \in \mathbb{Q} \text{ and } x > 0, x^2 < 2 \}T={xxQ and x>0,x2<2}. Prove that TTT has no upper bound within Q\mathbb{Q}Q.

Proof Use proof by contradiction. Suppose TTT has a least upper bound within Q\mathbb{Q}Q. Denote sup⁡T=nm\sup T = \frac{n}{m}supT=mn (where m,n∈N∗m, n \in \mathbb{N}^*m,nN and m,nm, nm,n are coprime). Then, it is obvious that:

1<(nm)2<31 < \left( \frac{n}{m} \right)^2 < 3 1<(mn)2<3

Since the square of a rational number cannot equal 2, there are only the following two possibilities: (1) 1<(nm)2<21 < \left( \frac{n}{m} \right)^2 < 21<(mn)2<2: Let 2−n2m2=t2 - \frac{n^2}{m^2} = t2m2n2=t, then 0<t<10 < t < 10<t<1. Let r=n6m2tr = \frac{n}{6m^2}tr=6m2nt. Obviously, nm+r>0\frac{n}{m} + r > 0mn+r>0, and nm+r∈Q\frac{n}{m} + r \in \mathbb{Q}mn+rQ. Since r2=n236m4t2<118tr^2 = \frac{n^2}{36m^4}t^2 < \frac{1}{18}tr2=36m4n2t2<181t, and 2nmr=n23m3t<23t\frac{2n}{m}r = \frac{n^2}{3m^3}t < \frac{2}{3}tm2nr=3m3n2t<32t, we can obtain:
(nm+r)2−2=r2+2nmr−t<0\left( \frac{n}{m} + r \right)^2 - 2 = r^2 + \frac{2n}{m}r - t < 0 (mn+r)22=r2+m2nrt<0
This shows that nm+r∈T\frac{n}{m} + r \in Tmn+rT, which contradicts the fact that nm\frac{n}{m}mn is the least upper bound of TTT. (2) 2<(nm)2<32 < \left( \frac{n}{m} \right)^2 < 32<(mn)2<3: Let n2m2−2=t\frac{n^2}{m^2} - 2 = tm2n22=t, then 0<t<10 < t < 10<t<1. Let r=n6m2tr = \frac{n}{6m^2}tr=6m2nt. Obviously, nm−r>0\frac{n}{m} - r > 0mnr>0, and nm−r∈Q\frac{n}{m} - r \in \mathbb{Q}mnrQ. Since 2nmr=n23m3t<t\frac{2n}{m}r = \frac{n^2}{3m^3}t < tm2nr=3m3n2t<t, we can obtain:
(nm−r)2−2=r2−2nmr+t>0\left( \frac{n}{m} - r \right)^2 - 2 = r^2 - \frac{2n}{m}r + t > 0 (mnr)22=r2m2nr+t>0
This shows that nm−r\frac{n}{m} - rmnr is also an upper bound of TTT, which contradicts the fact that nm\frac{n}{m}mn is the least upper bound of TTT.

Example Caculate

lim⁡n→∞(2n−1)!!(2n)!!\lim_{n\to \infty} \frac{(2n-1)!!}{(2n)!!}nlim(2n)!!(2n1)!!
and
lim⁡n→∞n(2n−1)!!(2n)!!\lim_{n\to \infty}\sqrt{n} \frac{(2n-1)!!}{(2n)!!}nlimn(2n)!!(2n1)!!

Solve

(1)

lim⁡n→∞(2n−1)!!(2n)!!=0\boxed{\lim_{n\to \infty} \frac{(2n-1)!!}{(2n)!!}=0}nlim(2n)!!(2n1)!!=0

0≤lim⁡n→∞(2n−1)!!(2n)!!=lim⁡n→∞∏i=1n(2i−1)∏i=1n(2i)=lim⁡n→∞(∏i=1n(2i−1)∏i=1n(2i))2≤lim⁡n→∞(∏i=1n(2i−1))2∏i=1n(2i+1)∏i=1n(2i−1)=lim⁡n→∞∏i=1n(2i−1)∏i=1n(2i+1)=lim⁡n→∞12n+1=0\begin{align*} 0\leq \lim_{n\to \infty} \frac{(2n-1)!!}{(2n)!!}&=\lim_{n\to \infty} \frac{\prod_{i=1}^n (2i-1)}{\prod_{i=1}^n (2i)}\\ &=\sqrt{\lim_{n\to \infty}\left( \frac{\prod_{i=1}^n (2i-1)}{\prod_{i=1}^n (2i)}\right)^2} \\&\leq \sqrt{\lim_{n\to \infty} \frac{\left(\prod_{i=1}^n (2i-1)\right)^2}{\prod_{i=1}^n (2i+1)\prod_{i=1}^n (2i-1)}}\\ &=\sqrt{\lim_{n\to \infty} \frac{\prod_{i=1}^n (2i-1)}{\prod_{i=1}^n (2i+1)}}\\&=\sqrt{\lim_{n\to \infty} \frac{1}{2n+1}} \\&=0 \end{align*}0nlim(2n)!!(2n1)!!=nlimi=1n(2i)i=1n(2i1)=nlim(i=1n(2i)i=1n(2i1))2nlimi=1n(2i+1)i=1n(2i1)(i=1n(2i1))2=nlimi=1n(2i+1)i=1n(2i1)=nlim2n+11=0

(2)

lim⁡n→∞n(2n−1)!!(2n)!!=π2\boxed{\lim_{n\to \infty}\sqrt{n} \frac{(2n-1)!!}{(2n)!!}=\frac{\sqrt{\pi}}{2}}nlimn(2n)!!(2n1)!!=2π

∫0π2sin⁡2nxdx∫0π2sin⁡2n+1xdx≤(∫0π2sin⁡2nxdx)2≤∫0π2sin⁡2nxdx∫0π2sin⁡2n−1xdx⇒(2n−1)!!(2n)!!(2n)!!(2n+1)!!π2≤(∫0π2sin⁡2nxdx)2≤(2n−1)!!(2n)!!(2n−2)!!(2n−1)!!π2⇒π212n+1≤((2n−1)!!(2n)!!)2≤12nπ2\begin{align*} &\int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x \int_{0}^{\frac{\pi}{2}}\sin^{2n+1} x\mathrm{d}x \leq \left(\int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x\right) ^2 \leq \int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x\int_{0}^{\frac{\pi}{2}}\sin^{2n-1} x\mathrm{d}x \\\Rightarrow & \frac{(2n-1)!!}{(2n)!!}\frac{(2n)!!}{(2n+1)!!}\frac{\pi}{2} \leq \left(\int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x\right)^2 \leq \frac{(2n-1)!!}{(2n)!!}\frac{(2n-2)!!}{(2n-1)!!}\frac{\pi}{2} \\ \\\Rightarrow & \frac{\pi}{2} \frac{1}{2n+1}\leq \left(\frac{(2n-1)!!}{(2n)!!}\right)^2 \leq \frac{1}{2n}\frac{\pi}{2} \end{align*} 02πsin2nxdx02πsin2n+1xdx(02πsin2nxdx)202πsin2nxdx02πsin2n1xdx(2n)!!(2n1)!!(2n+1)!!(2n)!!2π(02πsin2nxdx)2(2n)!!(2n1)!!(2n1)!!(2n2)!!2π2π2n+11((2n)!!(2n1)!!)22n12π

So

lim⁡n→∞n(2n−1)!!(2n)!!=π2\lim_{n\to \infty}\sqrt{n} \frac{(2n-1)!!}{(2n)!!}=\frac{\sqrt{\pi}}{2}nlimn(2n)!!(2n1)!!=2π

ExampleCaulate

lim⁡n→∞∑i=0nλian−i\lim_{n \to \infty}\sum_{i=0}^n \lambda ^i a_{n-i}nlimi=0nλiani

Solve

lim⁡n→∞∑i=0nλian−i=lim⁡n→∞∑i=0nλn−iai=lim⁡n→∞λn∑i=0naiλi=lim⁡n→∞∑i=0naiλi(1λ)n=lim⁡n→∞anλn(1λ)n−1(1λ−1)=aλ−1\begin{align*} \lim_{n \to \infty}\sum_{i=0}^n \lambda ^i a_{n-i}&=\lim_{n \to \infty}\sum_{i=0}^n \lambda ^{n-i} a_{i}\\ &=\lim_{n \to \infty}\lambda ^{n}\sum_{i=0}^n \frac{ a_{i}}{\lambda ^{i}}\\&=\lim_{n \to \infty}\frac{\sum_{i=0}^n \frac{ a_{i}}{\lambda ^{i}}}{\left(\frac{1}{\lambda}\right) ^{n}} \\ &=\lim_{n \to \infty}\frac{ \frac{ a_{n}}{\lambda ^{n}}}{\left(\frac{1}{\lambda}\right) ^{n-1}\left(\frac{1}{\lambda}-1\right)}\\ &=\frac{a}{\lambda -1} \end{align*} nlimi=0nλiani=nlimi=0nλniai=nlimλni=0nλiai=nlim(λ1)ni=0nλiai=nlim(λ1)n1(λ11)λnan=λ1a

Example Please use Cauchy Convergence Principle prove :A monotonic and bounded sequence must converge.

Proof

Only prove the case where an increasing sequence bounded above must have a limit.

Let’s assume without loss of generality that {xn}\{x_n\}{xn} is an increasing sequence bounded above.

We will use the method of proof by contradiction to show that {xn}\{x_n\}{xn} has a limit.

Suppose that the sequence {xn}\{x_n\}{xn} does not have a limit. According to the Cauchy convergence criterion, there exists ε0>0\varepsilon_0> 0ε0>0 such that for all NNN, there exist n>Nn > Nn>N where

∣xn−xN∣=xn−xN>ε0|x_n - x_N|=x_n - x_N>\varepsilon_0xnxN=xnxN>ε0

Successively take N1=1N_1 = 1N1=1, then there exists n1>N1n_1>N_1n1>N1 such that xn1−x1>ε0x_{n_1}-x_1 >\varepsilon_0xn1x1>ε0; N2=n1N_2 = n_1N2=n1, then there exists n2>n1n_2 > n_1n2>n1 such that

xn2−xn1>ε0⋮Nk=nk−1\begin{align*} x_{n_2}-x_{n_1}>\varepsilon_0\\ \vdots \\ N_k=n_{k - 1}\\ \end{align*}xn2xn1>ε0Nk=nk1
then there exists nk>nk−1n_k>n_{k - 1}nk>nk1 such that xnk−xnk−1>ε0x_{n_k}-x_{n_{k - 1}}>\varepsilon_0xnkxnk1>ε0. Adding up the above - listed inequalities, we get xnk−x1>kε0x_{n_k}-x_1>k\varepsilon_0xnkx1>kε0. For any real number GGG, when k>G−x1ε0k>\frac{G - x_1}{\varepsilon_0}k>ε0Gx1, we have xnk>Gx_{n_k}>Gxnk>G. This contradicts the fact that {xn}\{x_n\}{xn} is bounded above.

Therefore, the sequence {xn}\{x_n\}{xn} has a limit.

Example
Let An=∑k=1nakA_n=\sum_{k = 1}^{n}a_kAn=k=1nak, and lim⁡n→∞An\lim\limits_{n \to \infty}A_nnlimAn exists. {pn}\{p_n\}{pn} is a sequence of positive numbers that is monotonically increasing, and pn→+∞p_n\to+\inftypn+ as n→∞n\to\inftyn. Prove that:

lim⁡n→∞p1a1+p2a2+⋯+pnanpn=0\lim_{n \to \infty}\frac{p_1a_1 + p_2a_2+\cdots + p_na_n}{p_n}=0 nlimpnp1a1+p2a2++pnan=0

Prove

∑i=1npiaipn=∑i=2npi(Ai−Ai−1)+p1A1pn=∑i=1n−1(pi−pi+1)Ai+Anpnpn\begin{align*} \frac{\sum_{i=1}^np_ia_i}{p_n}&=\frac{\sum_{i=2}^np_i(A_i-A_{i-1})+p_1A_1}{p_n}\\ &=\frac{\sum_{i=1}^{n-1}(p_i-p_{i+1})A_i +A_np_n}{p_n} \end{align*} pni=1npiai=pni=2npi(AiAi1)+p1A1=pni=1n1(pipi+1)Ai+Anpn

So

lim⁡n→∞∑i=1npiaipn=lim⁡n→∞∑i=1n−1(pi−pi+1)Ai+Anpnpn=−A+A=0\begin{align*} \lim\limits_{n \to \infty}\frac{\sum_{i=1}^np_ia_i}{p_n} &=\lim\limits_{n \to \infty}\frac{\sum_{i=1}^{n-1}(p_i-p_{i+1})A_i +A_np_n}{p_n}\\ &=-A+A=0 \end{align*}nlimpni=1npiai=nlimpni=1n1(pipi+1)Ai+Anpn=A+A=0

Continuity and Limits of Functions

Example Letf(x)f(x)f(x)satisfy the functional equation f(2x)=f(x)f(2x)=f(x)f(2x)=f(x) on (0,+∞)(0, +\infty)(0,+), and
lim⁡x→+∞f(x)=A\lim\limits_{x \to +\infty}f(x) = Ax+limf(x)=A .Prove that
f(x)≡Af(x)\equiv Af(x)A
for x∈(0,+∞)x\in(0, +\infty)x(0,+).

Prove

∀x0∈(0,+∞)\forall x_0 \in (0,+\infty)x0(0,+),we have
f(x0)=f(2x0)=⋯=f(2nx0)f(x_0)=f(2x_0)=\cdots=f(2^nx_0)f(x0)=f(2x0)==f(2nx0)
Let n→∞n \to \inftyn
f(x0)=lim⁡n→∞f(2nx0)=f(lim⁡n→∞2nx0)=f(+∞)=Af(x_0)=\lim_{n\to \infty}f(2^nx_0)=f(\lim_{n\to \infty}2^nx_0)=f(+\infty)=Af(x0)=nlimf(2nx0)=f(nlim2nx0)=f(+)=A

By arbitrariness of x0x_0x0,we have:

f(x)≡Af(x)\equiv A f(x)A

DefinitionnLet f:I→Rf:I\rightarrow\mathbb{R}f:IR be a function. fff is said to be uniformly continuous on III if for every ε>0\varepsilon > 0ε>0, there exists a δ>0\delta>0δ>0 such that for all x1,x2∈Ix_1,x_2\in Ix1,x2I with ∣x1−x2∣<δ|x_1 - x_2|<\deltax1x2<δ, we have ∣f(x1)−f(x2)∣<ε|f(x_1)-f(x_2)|<\varepsilonf(x1)f(x2)<ε.

ExampleIf the function f(x)f(x)f(x) is continuous on [a,+∞)[a, +\infty)[a,+) and
lim⁡x→+∞f(x)=A\lim\limits_{x \to +\infty} f(x) = A x+limf(x)=A
then f(x)f(x)f(x)is uniformly continuous on [a,+∞)[a, +\infty)[a,+).

Prove

Since lim⁡x→+∞f(x)=A\lim\limits_{x \to +\infty} f(x)=Ax+limf(x)=A, for any ε>0\varepsilon> 0ε>0, there exists X>aX > aX>a such that for all x′,x′′>Xx', x'' > Xx,x′′>X, the inequality ∣f(x′)−f(x′′)∣<ε|f(x') - f(x'')| < \varepsilonf(x)f(x′′)<ε holds. Because f(x)f(x)f(x) is continuous on [a,X+1][a, X + 1][a,X+1], it is uniformly continuous. That is, there exists 0<δ<10 < \delta < 10<δ<1 such that for all x′,x′′∈[a,X+1]x', x'' \in [a, X + 1]x,x′′[a,X+1], when ∣x′−x′′∣<δ|x' - x''| < \deltaxx′′<δ, ∣f(x′)−f(x′′)∣<ε|f(x') - f(x'')| < \varepsilonf(x)f(x′′)<ε. Then, for all x′,x′′∈[a,+∞)x', x'' \in [a, +\infty)x,x′′[a,+), when ∣x′−x′′∣<δ|x' - x''| < \deltaxx′′<δ, ∣f(x′)−f(x′′)∣<ε|f(x') - f(x'')| < \varepsilonf(x)f(x′′)<ε.

ExampleLet f(x)f(x)f(x) be continuous on [a,b][a, b][a,b], f(a)=f(b)=0f(a)=f(b) = 0f(a)=f(b)=0, and f+′(a)⋅f−′(b)>0f'_{+}(a)\cdot f'_{-}(b)>0f+(a)f(b)>0. Prove that f(x)f(x)f(x) has at least one zero point in (a,b)(a, b)(a,b).

Prove

  • f+′(a)f'_{+}(a)f+(a): The right - hand derivative of f(x)f(x)f(x) at x=ax = ax=a, defined as f+′(a)=lim⁡x→a+f(x)−f(a)x−a=lim⁡x→a+f(x)x−af'_{+}(a)=\lim\limits_{x\rightarrow a^{+}}\frac{f(x)-f(a)}{x - a}=\lim\limits_{x\rightarrow a^{+}}\frac{f(x)}{x - a}f+(a)=xa+limxaf(x)f(a)=xa+limxaf(x) (since f(a)=0f(a) = 0f(a)=0).
  • f−′(b)f'_{-}(b)f(b): The left - hand derivative of f(x)f(x)f(x) at x=bx = bx=b, defined as f−′(b)=lim⁡x→b−f(x)−f(b)x−b=lim⁡x→b−f(x)x−bf'_{-}(b)=\lim\limits_{x\rightarrow b^{-}}\frac{f(x)-f(b)}{x - b}=\lim\limits_{x\rightarrow b^{-}}\frac{f(x)}{x - b}f(b)=xblimxbf(x)f(b)=xblimxbf(x) (since f(b)=0f(b)=0f(b)=0).

Since f+′(a)⋅f−′(b)>0f'_{+}(a)\cdot f'_{-}(b)>0f+(a)f(b)>0, we can know that f+′(a)f'_{+}(a)f+(a) and f−′(b)f'_{-}(b)f(b) have the same sign. Then, by the definition of one - sided derivatives, we can find two points x1∈(a,a+δ1)x_1\in(a,a + \delta_1)x1(a,a+δ1) and x2∈(b−δ2,b)x_2\in(b-\delta_2,b)x2(bδ2,b) such that f(x1)f(x_1)f(x1) and f(x2)f(x_2)f(x2) have opposite signs . Then, by the Intermediate Value Theorem, there must be a zero point of f(x)f(x)f(x) in the interval (x1,x2)⊆(a,b)(x_1,x_2)\subseteq(a,b)(x1,x2)(a,b).

Example
(xn−1e1x)(n)=(−1)nxn+1e1x\left(x^{n-1}e^{\frac{1}{x}}\right)^{(n)}=\frac{(-1)^n}{x^{n+1}}e^{\frac{1}{x}}(xn1ex1)(n)=xn+1(1)nex1

By Faà di Bruno’s Formula:

dndxnf(g(x))=∑n!m1!m2!⋯mn!⋅f(m1+m2+⋯+mn)(g(x))⋅∏j=1n(g(j)(x)j!)mj\frac{\mathrm{d}^n}{\mathrm{d}x^n} f(g(x)) = \sum \frac{n!}{m_1! \, m_2! \, \cdots \, m_n!} \cdot f^{(m_1 + m_2 + \cdots + m_n)}(g(x)) \cdot \prod_{j=1}^n \left( \frac{g^{(j)}(x)}{j!} \right)^{m_j} dxndnf(g(x))=m1!m2!mn!n!f(m1+m2++mn)(g(x))j=1n(j!g(j)(x))mj

where:
The summation ∑\sum ranges over all sets of non - negative integers m1,m2,…,mnm_1, m_2, \dots, m_nm1,m2,,mn satisfying:
1⋅m1+2⋅m2+3⋅m3+⋯+n⋅mn=n1 \cdot m_1 + 2 \cdot m_2 + 3 \cdot m_3 + \cdots + n \cdot m_n = n1m1+2m2+3m3++nmn=n

(xn−1e1x)(n)=e1x∑k=0n−1(nk)(n−1)!(n−1−k)!xn−1−k∑1⋅m1+⋯+(n−k)⋅mn−k=n−k(n−k)!m1!⋯mn−k!∏j=1n−k[(−1)jxj+1]mj=M=m1+⋯+mn−ke1x∑k=0n−1(nk)(n−1)!(n−1−k)!xn−1−k⋅(−1)n−k⋅∑(n−k)!m1!⋯mn−k!⋅x−((n−k)+M)=唯一有效项为k=0xn−1⋅(−1)ne1x⋅x−2n=(−1)nxn+1e1x\begin{align*} \left(x^{n-1}e^{\frac{1}{x}}\right)^{(n)}&=e^{\frac{1}{x}}\sum_{k=0}^{n-1}\binom{n}{k}\frac{(n-1)!}{(n-1-k)!} x^{n-1-k}\sum_{\substack{1 \cdot m_1 + \cdots + (n-k) \cdot m_{n-k} = n-k}}\frac{(n-k)!}{m_1!\cdots m_{n-k}!}\prod_{j=1}^{n-k}\left[\frac{(-1)^j}{x^{j+1}}\right]^{m_j}\\ &\stackrel{M=m_1+\cdots +m_{n-k}}{=}e^{\frac{1}{x}}\sum_{k=0}^{n-1}\binom{n}{k}\frac{(n-1)!}{(n-1-k)!} x^{n-1-k}\cdot (-1)^{n-k} \cdot \sum \frac{(n-k)!}{m_1! \cdots m_{n-k}!} \cdot x^{-((n-k) + M)}\\ &\stackrel{\text{唯一有效项为}k = 0}{=}x^{n-1} \cdot (-1)^n e^{\frac{1}{x}} \cdot x^{-2n} = \frac{(-1)^n}{x^{n+1}} e^{\frac{1}{x}} \end{align*} (xn1ex1)(n)=ex1k=0n1(kn)(n1k)!(n1)!xn1k1m1++(nk)mnk=nkm1!mnk!(nk)!j=1nk[xj+1(1)j]mj=M=m1++mnkex1k=0n1(kn)(n1k)!(n1)!xn1k(1)nkm1!mnk!(nk)!x((nk)+M)=唯一有效项为k=0xn1(1)nex1x2n=xn+1(1)nex1

Mathematical induction is easy

# Advanced  Math & Math Analysis |01 Limits, Continuous `Note: For simple definitions and corollaries, we will not elaborate.`@[toc]
## Some easy knowledge### Mathematical induction>**Theorem**
Let $T(n)$ is a proposition if:
>
>(1) $T(1)$ is true;
>
>(2)let $T(k)(k\ge 1)$ is true;
>
>(3) prove: $T(k+1)$is true.
>
>So $T(n)$ is true.**Example**Let $n\ge 1$ and $n\in \mathbb{N}$,prove $$n!< \left(\frac{n+1}{2}\right)^n$$**Proof**When $n = 2$, $2! = 2 < \frac{9}{4} = \left( \frac{2 + 1}{2} \right)^2$, and the proposition holds.Suppose the proposition holds when $n = k (k \geq 2)$, that is, $$ k! < \left( \frac{k + 1}{2} \right)^k $$When $n = k + 1$, $$ \begin{align*} (k + 1)!&= k!(k + 1)\\ &< \left( \frac{k + 2}{2} \cdot \frac{k + 1}{k + 2} \right)^k \cdot (k + 1)\\ &= \left( \frac{k + 2}{2} \right)^k \cdot \frac{(k + 1)^{k + 1}}{(k + 2)^k}\\ &= \frac{(k + 2)^{k + 1}}{2^k} \cdot \left( \frac{k + 1}{k + 2} \right)^{k + 1}\\ &= 2 \left( \frac{k + 2}{2} \right)^{k + 1} \cdot \frac{1}{\left( \frac{k + 2}{k + 1} \right)^{k + 1}}\\ &= 2 \left( \frac{k + 2}{2} \right)^{k + 1} \cdot \frac{1}{\left( 1 + \frac{1}{k + 1} \right)^{k + 1}} \end{align*} $$ By $(1+x)^n\ge 1+nx$,$x\in(-1,+\infty)$,$n\in \mathbb{N}_+$, we have $$ \left( 1 + \frac{1}{k + 1} \right)^{k + 1} > 1 + (k + 1) \cdot \frac{1}{k + 1} = 2 $$ So $$ (k + 1)! < 2 \left( \frac{k + 2}{2} \right)^{k + 1} \cdot \frac{1}{2} = \left( \frac{k + 2}{2} \right)^{k + 1} $$Thus, when $n = k + 1$, the proposition holds. The proof is completed. ### Some equation of trigonometric function### Inequality## Limits of sequence>**Example** Prove  an open interval has no maximum value.**Proof**For any open continue interval $(a,b)$ can be mapping to $(0,1)$ , by$$f:\frac{x-a}{b-a}$$Suppose there exists a  $\max \{(0,1)\} \stackrel{\scriptstyle\triangle}{=} \alpha $ ,we have$$
\begin{align*}&0< \frac{1}{2}\alpha <\frac{1}{2} \\&\Rightarrow  \frac{1}{2} < \frac{\alpha +1}{2} <1
\end{align*}
$$Obviously,$$\alpha < \frac{\alpha +1}{2}$$This contradicts the assumption, so the assumption is wrong.>**Example** Let $T = \{ x \mid x \in \mathbb{Q} \text{ and } x > 0, x^2 < 2 \}$. Prove that $T$ has no upper bound within $\mathbb{Q}$.**Proof** Use proof by contradiction. Suppose $T$ has a least upper bound within $\mathbb{Q}$. Denote $\sup T = \frac{n}{m}$ (where $m, n \in \mathbb{N}^*$ and $m, n$ are coprime). Then, it is obvious that: $$ 1 < \left( \frac{n}{m} \right)^2 < 3 $$Since the square of a rational number cannot equal 2, there are only the following two possibilities: (1) $1 < \left( \frac{n}{m} \right)^2 < 2$: Let $2 - \frac{n^2}{m^2} = t$, then $0 < t < 1$. Let $r = \frac{n}{6m^2}t$. Obviously, $\frac{n}{m} + r > 0$, and $\frac{n}{m} + r \in \mathbb{Q}$. Since $r^2 = \frac{n^2}{36m^4}t^2 < \frac{1}{18}t$, and $\frac{2n}{m}r = \frac{n^2}{3m^3}t < \frac{2}{3}t$, we can obtain: 
$$ \left( \frac{n}{m} + r \right)^2 - 2 = r^2 + \frac{2n}{m}r - t < 0 $$
This shows that $\frac{n}{m} + r \in T$, which contradicts the fact that $\frac{n}{m}$ is the least upper bound of $T$. (2) $2 < \left( \frac{n}{m} \right)^2 < 3$: Let $\frac{n^2}{m^2} - 2 = t$, then $0 < t < 1$. Let $r = \frac{n}{6m^2}t$. Obviously, $\frac{n}{m} - r > 0$, and $\frac{n}{m} - r \in \mathbb{Q}$. Since $\frac{2n}{m}r = \frac{n^2}{3m^3}t < t$, we can obtain: 
$$ \left( \frac{n}{m} - r \right)^2 - 2 = r^2 - \frac{2n}{m}r + t > 0 $$
This shows that $\frac{n}{m} - r$ is also an upper bound of $T$, which contradicts the fact that $\frac{n}{m}$ is the least upper bound of $T$. >**Example** Caculate
>
>$$\lim_{n\to \infty} \frac{(2n-1)!!}{(2n)!!}$$
>and
>$$\lim_{n\to \infty}\sqrt{n} \frac{(2n-1)!!}{(2n)!!}$$**Solve**(1)$$\boxed{\lim_{n\to \infty} \frac{(2n-1)!!}{(2n)!!}=0}$$$$\begin{align*}
0\leq \lim_{n\to \infty} \frac{(2n-1)!!}{(2n)!!}&=\lim_{n\to \infty} \frac{\prod_{i=1}^n (2i-1)}{\prod_{i=1}^n (2i)}\\
&=\sqrt{\lim_{n\to \infty}\left( \frac{\prod_{i=1}^n (2i-1)}{\prod_{i=1}^n (2i)}\right)^2}
\\&\leq \sqrt{\lim_{n\to \infty} \frac{\left(\prod_{i=1}^n (2i-1)\right)^2}{\prod_{i=1}^n (2i+1)\prod_{i=1}^n (2i-1)}}\\
&=\sqrt{\lim_{n\to \infty} \frac{\prod_{i=1}^n (2i-1)}{\prod_{i=1}^n (2i+1)}}\\&=\sqrt{\lim_{n\to \infty} \frac{1}{2n+1}}
\\&=0
\end{align*}$$(2)$$\boxed{\lim_{n\to \infty}\sqrt{n} \frac{(2n-1)!!}{(2n)!!}=\frac{\sqrt{\pi}}{2}}$$$$
\begin{align*}
&\int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x \int_{0}^{\frac{\pi}{2}}\sin^{2n+1} x\mathrm{d}x \leq \left(\int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x\right)
^2 \leq \int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x\int_{0}^{\frac{\pi}{2}}\sin^{2n-1} x\mathrm{d}x
\\\Rightarrow  & \frac{(2n-1)!!}{(2n)!!}\frac{(2n)!!}{(2n+1)!!}\frac{\pi}{2} \leq \left(\int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x\right)^2 \leq \frac{(2n-1)!!}{(2n)!!}\frac{(2n-2)!!}{(2n-1)!!}\frac{\pi}{2} \\
\\\Rightarrow  &  \frac{\pi}{2} \frac{1}{2n+1}\leq \left(\frac{(2n-1)!!}{(2n)!!}\right)^2 \leq \frac{1}{2n}\frac{\pi}{2} 
\end{align*}
$$So$$\lim_{n\to \infty}\sqrt{n} \frac{(2n-1)!!}{(2n)!!}=\frac{\sqrt{\pi}}{2}$$> **Example**Caulate
>
>$$\lim_{n \to \infty}\sum_{i=0}^n \lambda ^i a_{n-i}$$**Solve**$$
\begin{align*}
\lim_{n \to \infty}\sum_{i=0}^n \lambda ^i a_{n-i}&=\lim_{n \to \infty}\sum_{i=0}^n \lambda ^{n-i} a_{i}\\
&=\lim_{n \to \infty}\lambda ^{n}\sum_{i=0}^n \frac{ a_{i}}{\lambda ^{i}}\\&=\lim_{n \to \infty}\frac{\sum_{i=0}^n \frac{ a_{i}}{\lambda ^{i}}}{\left(\frac{1}{\lambda}\right) ^{n}}
\\
&=\lim_{n \to \infty}\frac{ \frac{ a_{n}}{\lambda ^{n}}}{\left(\frac{1}{\lambda}\right) ^{n-1}\left(\frac{1}{\lambda}-1\right)}\\
&=\frac{a}{\lambda -1}
\end{align*}
$$>**Example** Please use Cauchy Convergence Principle prove :A monotonic and bounded sequence must converge.**Proof**Only prove the case where an increasing sequence bounded above must have a limit. Let's assume without loss of generality that $\{x_n\}$ is an increasing sequence bounded above. We will use the method of proof by contradiction to show that $\{x_n\}$ has a limit. Suppose that the sequence $\{x_n\}$ does not have a limit. According to the Cauchy convergence criterion, there exists $\varepsilon_0> 0$ such that for all $N$, there exist $n > N$ where $$|x_n - x_N|=x_n - x_N>\varepsilon_0$$Successively take $N_1 = 1$, then there exists $n_1>N_1$ such that $x_{n_1}-x_1 >\varepsilon_0$; $N_2 = n_1$, then there exists $n_2 > n_1$ such that $$
\begin{align*}
x_{n_2}-x_{n_1}>\varepsilon_0\\ \vdots \\
N_k=n_{k - 1}\\
\end{align*}$$
then there exists $n_k>n_{k - 1}$ such that $x_{n_k}-x_{n_{k - 1}}>\varepsilon_0$. Adding up the above - listed inequalities, we get $x_{n_k}-x_1>k\varepsilon_0$. For any real number $G$, when $k>\frac{G - x_1}{\varepsilon_0}$, we have $x_{n_k}>G$. This contradicts the fact that $\{x_n\}$ is bounded above. Therefore, the sequence $\{x_n\}$ has a limit. >**Example**Let $A_n=\sum_{k = 1}^{n}a_k$, and $\lim\limits_{n \to \infty}A_n$ exists. $\{p_n\}$ is a sequence of positive numbers that is monotonically increasing, and $p_n\to+\infty$ as $n\to\infty$. Prove that:
>
>$$
\lim_{n \to \infty}\frac{p_1a_1 + p_2a_2+\cdots + p_na_n}{p_n}=0
$$  **Prove**$$
\begin{align*}
\frac{\sum_{i=1}^np_ia_i}{p_n}&=\frac{\sum_{i=2}^np_i(A_i-A_{i-1})+p_1A_1}{p_n}\\
&=\frac{\sum_{i=1}^{n-1}(p_i-p_{i+1})A_i +A_np_n}{p_n}
\end{align*}
$$So$$
\begin{align*}
\lim\limits_{n \to \infty}\frac{\sum_{i=1}^np_ia_i}{p_n}
&=\lim\limits_{n \to \infty}\frac{\sum_{i=1}^{n-1}(p_i-p_{i+1})A_i +A_np_n}{p_n}\\
&=-A+A=0
\end{align*}$$>**Example**15. Let$f(x)$satisfy the functional equation $f(2x)=f(x)$ on $(0, +\infty)$, and 
$\lim\limits_{x \to +\infty}f(x) = A$ .Prove that 
>$$f(x)\equiv A$$
>for $x\in(0, +\infty)$. **Prove**$\forall x_0 \in (0,+\infty)$,we have
$$f(x_0)=f(2x_0)=\cdots=f(2^nx_0)$$
Let $n \to \infty$
$$f(x_0)=\lim_{n\to \infty}f(2^nx_0)=f(\lim_{n\to \infty}2^nx_0)=f(+\infty)=A$$By arbitrariness of $x_0$,we have:$$f(x)\equiv A $$>**Definitionn**Let $f:I\rightarrow\mathbb{R}$ be a function. $f$ is said to be **uniformly continuous** on $I$ if for every $\varepsilon > 0$, there exists a $\delta>0$ such that for all $x_1,x_2\in I$ with $|x_1 - x_2|<\delta$, we have $|f(x_1)-f(x_2)|<\varepsilon$.>**Example**If the function $f(x)$ is continuous on $[a, +\infty)$ and 
>$$\lim\limits_{x \to +\infty} f(x) = A
>$$ 
>then $f(x)$is uniformly continuous on $[a, +\infty)$.  **Prove**Since $\lim\limits_{x \to +\infty} f(x)=A$, for any $\varepsilon> 0$, there exists $X > a$ such that for all $x', x'' > X$, the inequality $|f(x') - f(x'')| < \varepsilon$ holds.  Because $f(x)$ is continuous on $[a, X + 1]$, it is uniformly continuous. That is, there exists $0 < \delta < 1$ such that for all $x', x'' \in [a, X + 1]$, when $|x' - x''| < \delta$,  $|f(x') - f(x'')| < \varepsilon$.  Then, for all $x', x'' \in [a, +\infty)$, when $|x' - x''| < \delta$,  $|f(x') - f(x'')| < \varepsilon$. 
>**Example**Let $f(x)$ be continuous on $[a, b]$, $f(a)=f(b) = 0$, and $f'_{+}(a)\cdot f'_{-}(b)>0$. Prove that $f(x)$ has at least one zero point in $(a, b)$.**Prove**- $f'_{+}(a)$: The right - hand derivative of $f(x)$ at $x = a$, defined as $f'_{+}(a)=\lim\limits_{x\rightarrow a^{+}}\frac{f(x)-f(a)}{x - a}=\lim\limits_{x\rightarrow a^{+}}\frac{f(x)}{x - a}$ (since $f(a) = 0$).
- $f'_{-}(b)$: The left - hand derivative of $f(x)$ at $x = b$, defined as $f'_{-}(b)=\lim\limits_{x\rightarrow b^{-}}\frac{f(x)-f(b)}{x - b}=\lim\limits_{x\rightarrow b^{-}}\frac{f(x)}{x - b}$ (since $f(b)=0$). Since $f'_{+}(a)\cdot f'_{-}(b)>0$, we can know that $f'_{+}(a)$ and $f'_{-}(b)$ have the same sign. Then, by the definition of one - sided derivatives, we can find two points $x_1\in(a,a + \delta_1)$ and $x_2\in(b-\delta_2,b)$ such that $f(x_1)$ and $f(x_2)$ have opposite signs . Then, by the Intermediate Value Theorem, there must be a zero point of $f(x)$ in the interval $(x_1,x_2)\subseteq(a,b)$. >**Example**
>$$\left(x^{n-1}e^{\frac{1}{x}}\right)^{(n)}=\frac{(-1)^n}{x^{n+1}}e^{\frac{1}{x}}$$By **Faà di Bruno's Formula**:  $$
\frac{\mathrm{d}^n}{\mathrm{d}x^n} f(g(x)) = \sum \frac{n!}{m_1! \, m_2! \, \cdots \, m_n!} \cdot f^{(m_1 + m_2 + \cdots + m_n)}(g(x)) \cdot \prod_{j=1}^n \left( \frac{g^{(j)}(x)}{j!} \right)^{m_j}
$$  where:  
The summation $\sum$ ranges over all sets of non - negative integers $m_1, m_2, \dots, m_n$ satisfying:  
$$1 \cdot m_1 + 2 \cdot m_2 + 3 \cdot m_3 + \cdots + n \cdot m_n = n$$  $$
\begin{align*}
\left(x^{n-1}e^{\frac{1}{x}}\right)^{(n)}&=e^{\frac{1}{x}}\sum_{k=0}^{n-1}\binom{n}{k}\frac{(n-1)!}{(n-1-k)!} x^{n-1-k}\sum_{\substack{1 \cdot m_1 + \cdots + (n-k) \cdot m_{n-k} = n-k}}\frac{(n-k)!}{m_1!\cdots m_{n-k}!}\prod_{j=1}^{n-k}\left[\frac{(-1)^j}{x^{j+1}}\right]^{m_j}\\
&\stackrel{M=m_1+\cdots +m_{n-k}}{=}e^{\frac{1}{x}}\sum_{k=0}^{n-1}\binom{n}{k}\frac{(n-1)!}{(n-1-k)!} x^{n-1-k}\cdot (-1)^{n-k} \cdot \sum \frac{(n-k)!}{m_1! \cdots m_{n-k}!} \cdot x^{-((n-k) + M)}\\
&\stackrel{\text{唯一有效项为}k = 0}{=}x^{n-1} \cdot (-1)^n e^{\frac{1}{x}} \cdot x^{-2n} = \frac{(-1)^n}{x^{n+1}} e^{\frac{1}{x}}
\end{align*}
$$`Mathematical induction is easy`
http://www.dtcms.com/a/341134.html

相关文章:

  • uniapp打包成h5,本地服务器运行,路径报错问题
  • PyTorch API 4
  • 使数组k递增的最少操作次数
  • 路由器的NAT类型
  • 确保测试环境一致性与稳定性 5大策略
  • AI 效应: GPT-6,“用户真正想要的是记忆”
  • 获取本地IP地址、MAC地址写法
  • SQL 中大于小于号的表示方法总结
  • Bitcoin有升值潜力吗
  • 《代码沙盒深度实战:iframe安全隔离与实时双向通信的架构设计与落地策略》
  • 在SQL中使用大模型时间预测模型TimesFM
  • Mybatis执行SQL流程(五)之MapperProxy与MapperMethod
  • zoho crm api 无法修改富文本字段的原因:api 版本太低
  • 23种设计模式——构建器模式(Builder Pattern)详解
  • Spring Boot Controller 使用 @RequestBody + @ModelAttribute 接收请求
  • 车联网(V2X)中万物的重新定义---联网汽车新时代
  • Dubbo 的 Java 项目间调用的完整示例
  • 分析NeRF模型中颜色计算公式中的参数
  • Paraformer实时语音识别中的碎碎念
  • RuntimeError: Dataset scripts are no longer supported, but found wikipedia.py
  • 车辆订单状态管理的优化方案:状态机设计模式
  • 从ioutil到os:Golang在线客服聊天系统文件读取的迁移实践
  • 从零开发Java坦克大战Ⅱ(上) -- 从单机到联机(架构演进与设计模式剖析)
  • 音频大模型学习笔记
  • CS+ for CC编译超慢的问题该如何解决
  • 0-1 背包问题(模板)
  • 汽车ECU实现数据安全存储(机密性保护)的一种方案
  • Ubuntu apt安装nginx
  • 使用Spring Retry组件优雅地实现重试
  • Java 定时任务 - 从基础到高阶使用 - 从 Timer 到 Quart