Advanced Math Math Analysis |01 Limits, Continuous
Advanced Math & Math Analysis |01 Limits, Continuous
Note: For simple definitions and corollaries, we will not elaborate.
文章目录
- Advanced Math & Math Analysis |01 Limits, Continuous
- Some easy knowledge
- Mathematical induction
- Some equation of trigonometric function
- Inequality
- Limits of sequence
- Continuity and Limits of Functions
Some easy knowledge
Mathematical induction
Theorem
Let T(n)T(n)T(n) is a proposition if:(1) T(1)T(1)T(1) is true;
(2)let T(k)(k≥1)T(k)(k\ge 1)T(k)(k≥1) is true;
(3) prove: T(k+1)T(k+1)T(k+1)is true.
So T(n)T(n)T(n) is true.
Example
Let n≥1n\ge 1n≥1 and n∈Nn\in \mathbb{N}n∈N,prove
n!<(n+12)nn!< \left(\frac{n+1}{2}\right)^nn!<(2n+1)n
Proof
When n=2n = 2n=2, 2!=2<94=(2+12)22! = 2 < \frac{9}{4} = \left( \frac{2 + 1}{2} \right)^22!=2<49=(22+1)2, and the proposition holds.
Suppose the proposition holds when n=k(k≥2)n = k (k \geq 2)n=k(k≥2), that is, k!<(k+12)kk! < \left( \frac{k + 1}{2} \right)^k k!<(2k+1)k
When n=k+1n = k + 1n=k+1,
(k+1)!=k!(k+1)<(k+22⋅k+1k+2)k⋅(k+1)=(k+22)k⋅(k+1)k+1(k+2)k=(k+2)k+12k⋅(k+1k+2)k+1=2(k+22)k+1⋅1(k+2k+1)k+1=2(k+22)k+1⋅1(1+1k+1)k+1\begin{align*} (k + 1)!&= k!(k + 1)\\ &< \left( \frac{k + 2}{2} \cdot \frac{k + 1}{k + 2} \right)^k \cdot (k + 1)\\ &= \left( \frac{k + 2}{2} \right)^k \cdot \frac{(k + 1)^{k + 1}}{(k + 2)^k}\\ &= \frac{(k + 2)^{k + 1}}{2^k} \cdot \left( \frac{k + 1}{k + 2} \right)^{k + 1}\\ &= 2 \left( \frac{k + 2}{2} \right)^{k + 1} \cdot \frac{1}{\left( \frac{k + 2}{k + 1} \right)^{k + 1}}\\ &= 2 \left( \frac{k + 2}{2} \right)^{k + 1} \cdot \frac{1}{\left( 1 + \frac{1}{k + 1} \right)^{k + 1}} \end{align*} (k+1)!=k!(k+1)<(2k+2⋅k+2k+1)k⋅(k+1)=(2k+2)k⋅(k+2)k(k+1)k+1=2k(k+2)k+1⋅(k+2k+1)k+1=2(2k+2)k+1⋅(k+1k+2)k+11=2(2k+2)k+1⋅(1+k+11)k+11
By (1+x)n≥1+nx(1+x)^n\ge 1+nx(1+x)n≥1+nx,x∈(−1,+∞)x\in(-1,+\infty)x∈(−1,+∞),n∈N+n\in \mathbb{N}_+n∈N+, we have
(1+1k+1)k+1>1+(k+1)⋅1k+1=2\left( 1 + \frac{1}{k + 1} \right)^{k + 1} > 1 + (k + 1) \cdot \frac{1}{k + 1} = 2 (1+k+11)k+1>1+(k+1)⋅k+11=2 So (k+1)!<2(k+22)k+1⋅12=(k+22)k+1(k + 1)! < 2 \left( \frac{k + 2}{2} \right)^{k + 1} \cdot \frac{1}{2} = \left( \frac{k + 2}{2} \right)^{k + 1} (k+1)!<2(2k+2)k+1⋅21=(2k+2)k+1
Thus, when n=k+1n = k + 1n=k+1, the proposition holds. The proof is completed.
Some equation of trigonometric function
Inequality
Limits of sequence
Example Prove an open interval has no maximum value.
Proof
For any open continue interval (a,b)(a,b)(a,b) can be mapping to (0,1)(0,1)(0,1) , by
f:x−ab−af:\frac{x-a}{b-a}f:b−ax−a
Suppose there exists a $\max {(0,1)} \stackrel{\scriptstyle\triangle}{=} \alpha $ ,we have
0<12α<12⇒12<α+12<1\begin{align*} &0< \frac{1}{2}\alpha <\frac{1}{2} \\ &\Rightarrow \frac{1}{2} < \frac{\alpha +1}{2} <1 \end{align*} 0<21α<21⇒21<2α+1<1
Obviously,
α<α+12\alpha < \frac{\alpha +1}{2}α<2α+1
This contradicts the assumption, so the assumption is wrong.
Example Let T={x∣x∈Qand x>0,x2<2}T = \{ x \mid x \in \mathbb{Q} \text{ and } x > 0, x^2 < 2 \}T={x∣x∈Q and x>0,x2<2}. Prove that TTT has no upper bound within Q\mathbb{Q}Q.
Proof Use proof by contradiction. Suppose TTT has a least upper bound within Q\mathbb{Q}Q. Denote supT=nm\sup T = \frac{n}{m}supT=mn (where m,n∈N∗m, n \in \mathbb{N}^*m,n∈N∗ and m,nm, nm,n are coprime). Then, it is obvious that:
1<(nm)2<31 < \left( \frac{n}{m} \right)^2 < 3 1<(mn)2<3
Since the square of a rational number cannot equal 2, there are only the following two possibilities: (1) 1<(nm)2<21 < \left( \frac{n}{m} \right)^2 < 21<(mn)2<2: Let 2−n2m2=t2 - \frac{n^2}{m^2} = t2−m2n2=t, then 0<t<10 < t < 10<t<1. Let r=n6m2tr = \frac{n}{6m^2}tr=6m2nt. Obviously, nm+r>0\frac{n}{m} + r > 0mn+r>0, and nm+r∈Q\frac{n}{m} + r \in \mathbb{Q}mn+r∈Q. Since r2=n236m4t2<118tr^2 = \frac{n^2}{36m^4}t^2 < \frac{1}{18}tr2=36m4n2t2<181t, and 2nmr=n23m3t<23t\frac{2n}{m}r = \frac{n^2}{3m^3}t < \frac{2}{3}tm2nr=3m3n2t<32t, we can obtain:
(nm+r)2−2=r2+2nmr−t<0\left( \frac{n}{m} + r \right)^2 - 2 = r^2 + \frac{2n}{m}r - t < 0 (mn+r)2−2=r2+m2nr−t<0
This shows that nm+r∈T\frac{n}{m} + r \in Tmn+r∈T, which contradicts the fact that nm\frac{n}{m}mn is the least upper bound of TTT. (2) 2<(nm)2<32 < \left( \frac{n}{m} \right)^2 < 32<(mn)2<3: Let n2m2−2=t\frac{n^2}{m^2} - 2 = tm2n2−2=t, then 0<t<10 < t < 10<t<1. Let r=n6m2tr = \frac{n}{6m^2}tr=6m2nt. Obviously, nm−r>0\frac{n}{m} - r > 0mn−r>0, and nm−r∈Q\frac{n}{m} - r \in \mathbb{Q}mn−r∈Q. Since 2nmr=n23m3t<t\frac{2n}{m}r = \frac{n^2}{3m^3}t < tm2nr=3m3n2t<t, we can obtain:
(nm−r)2−2=r2−2nmr+t>0\left( \frac{n}{m} - r \right)^2 - 2 = r^2 - \frac{2n}{m}r + t > 0 (mn−r)2−2=r2−m2nr+t>0
This shows that nm−r\frac{n}{m} - rmn−r is also an upper bound of TTT, which contradicts the fact that nm\frac{n}{m}mn is the least upper bound of TTT.
Example Caculate
limn→∞(2n−1)!!(2n)!!\lim_{n\to \infty} \frac{(2n-1)!!}{(2n)!!}n→∞lim(2n)!!(2n−1)!!
and
limn→∞n(2n−1)!!(2n)!!\lim_{n\to \infty}\sqrt{n} \frac{(2n-1)!!}{(2n)!!}n→∞limn(2n)!!(2n−1)!!
Solve
(1)
limn→∞(2n−1)!!(2n)!!=0\boxed{\lim_{n\to \infty} \frac{(2n-1)!!}{(2n)!!}=0}n→∞lim(2n)!!(2n−1)!!=0
0≤limn→∞(2n−1)!!(2n)!!=limn→∞∏i=1n(2i−1)∏i=1n(2i)=limn→∞(∏i=1n(2i−1)∏i=1n(2i))2≤limn→∞(∏i=1n(2i−1))2∏i=1n(2i+1)∏i=1n(2i−1)=limn→∞∏i=1n(2i−1)∏i=1n(2i+1)=limn→∞12n+1=0\begin{align*} 0\leq \lim_{n\to \infty} \frac{(2n-1)!!}{(2n)!!}&=\lim_{n\to \infty} \frac{\prod_{i=1}^n (2i-1)}{\prod_{i=1}^n (2i)}\\ &=\sqrt{\lim_{n\to \infty}\left( \frac{\prod_{i=1}^n (2i-1)}{\prod_{i=1}^n (2i)}\right)^2} \\&\leq \sqrt{\lim_{n\to \infty} \frac{\left(\prod_{i=1}^n (2i-1)\right)^2}{\prod_{i=1}^n (2i+1)\prod_{i=1}^n (2i-1)}}\\ &=\sqrt{\lim_{n\to \infty} \frac{\prod_{i=1}^n (2i-1)}{\prod_{i=1}^n (2i+1)}}\\&=\sqrt{\lim_{n\to \infty} \frac{1}{2n+1}} \\&=0 \end{align*}0≤n→∞lim(2n)!!(2n−1)!!=n→∞lim∏i=1n(2i)∏i=1n(2i−1)=n→∞lim(∏i=1n(2i)∏i=1n(2i−1))2≤n→∞lim∏i=1n(2i+1)∏i=1n(2i−1)(∏i=1n(2i−1))2=n→∞lim∏i=1n(2i+1)∏i=1n(2i−1)=n→∞lim2n+11=0
(2)
limn→∞n(2n−1)!!(2n)!!=π2\boxed{\lim_{n\to \infty}\sqrt{n} \frac{(2n-1)!!}{(2n)!!}=\frac{\sqrt{\pi}}{2}}n→∞limn(2n)!!(2n−1)!!=2π
∫0π2sin2nxdx∫0π2sin2n+1xdx≤(∫0π2sin2nxdx)2≤∫0π2sin2nxdx∫0π2sin2n−1xdx⇒(2n−1)!!(2n)!!(2n)!!(2n+1)!!π2≤(∫0π2sin2nxdx)2≤(2n−1)!!(2n)!!(2n−2)!!(2n−1)!!π2⇒π212n+1≤((2n−1)!!(2n)!!)2≤12nπ2\begin{align*} &\int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x \int_{0}^{\frac{\pi}{2}}\sin^{2n+1} x\mathrm{d}x \leq \left(\int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x\right) ^2 \leq \int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x\int_{0}^{\frac{\pi}{2}}\sin^{2n-1} x\mathrm{d}x \\\Rightarrow & \frac{(2n-1)!!}{(2n)!!}\frac{(2n)!!}{(2n+1)!!}\frac{\pi}{2} \leq \left(\int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x\right)^2 \leq \frac{(2n-1)!!}{(2n)!!}\frac{(2n-2)!!}{(2n-1)!!}\frac{\pi}{2} \\ \\\Rightarrow & \frac{\pi}{2} \frac{1}{2n+1}\leq \left(\frac{(2n-1)!!}{(2n)!!}\right)^2 \leq \frac{1}{2n}\frac{\pi}{2} \end{align*} ⇒⇒∫02πsin2nxdx∫02πsin2n+1xdx≤(∫02πsin2nxdx)2≤∫02πsin2nxdx∫02πsin2n−1xdx(2n)!!(2n−1)!!(2n+1)!!(2n)!!2π≤(∫02πsin2nxdx)2≤(2n)!!(2n−1)!!(2n−1)!!(2n−2)!!2π2π2n+11≤((2n)!!(2n−1)!!)2≤2n12π
So
limn→∞n(2n−1)!!(2n)!!=π2\lim_{n\to \infty}\sqrt{n} \frac{(2n-1)!!}{(2n)!!}=\frac{\sqrt{\pi}}{2}n→∞limn(2n)!!(2n−1)!!=2π
ExampleCaulate
limn→∞∑i=0nλian−i\lim_{n \to \infty}\sum_{i=0}^n \lambda ^i a_{n-i}n→∞limi=0∑nλian−i
Solve
limn→∞∑i=0nλian−i=limn→∞∑i=0nλn−iai=limn→∞λn∑i=0naiλi=limn→∞∑i=0naiλi(1λ)n=limn→∞anλn(1λ)n−1(1λ−1)=aλ−1\begin{align*} \lim_{n \to \infty}\sum_{i=0}^n \lambda ^i a_{n-i}&=\lim_{n \to \infty}\sum_{i=0}^n \lambda ^{n-i} a_{i}\\ &=\lim_{n \to \infty}\lambda ^{n}\sum_{i=0}^n \frac{ a_{i}}{\lambda ^{i}}\\&=\lim_{n \to \infty}\frac{\sum_{i=0}^n \frac{ a_{i}}{\lambda ^{i}}}{\left(\frac{1}{\lambda}\right) ^{n}} \\ &=\lim_{n \to \infty}\frac{ \frac{ a_{n}}{\lambda ^{n}}}{\left(\frac{1}{\lambda}\right) ^{n-1}\left(\frac{1}{\lambda}-1\right)}\\ &=\frac{a}{\lambda -1} \end{align*} n→∞limi=0∑nλian−i=n→∞limi=0∑nλn−iai=n→∞limλni=0∑nλiai=n→∞lim(λ1)n∑i=0nλiai=n→∞lim(λ1)n−1(λ1−1)λnan=λ−1a
Example Please use Cauchy Convergence Principle prove :A monotonic and bounded sequence must converge.
Proof
Only prove the case where an increasing sequence bounded above must have a limit.
Let’s assume without loss of generality that {xn}\{x_n\}{xn} is an increasing sequence bounded above.
We will use the method of proof by contradiction to show that {xn}\{x_n\}{xn} has a limit.
Suppose that the sequence {xn}\{x_n\}{xn} does not have a limit. According to the Cauchy convergence criterion, there exists ε0>0\varepsilon_0> 0ε0>0 such that for all NNN, there exist n>Nn > Nn>N where
∣xn−xN∣=xn−xN>ε0|x_n - x_N|=x_n - x_N>\varepsilon_0∣xn−xN∣=xn−xN>ε0
Successively take N1=1N_1 = 1N1=1, then there exists n1>N1n_1>N_1n1>N1 such that xn1−x1>ε0x_{n_1}-x_1 >\varepsilon_0xn1−x1>ε0; N2=n1N_2 = n_1N2=n1, then there exists n2>n1n_2 > n_1n2>n1 such that
xn2−xn1>ε0⋮Nk=nk−1\begin{align*} x_{n_2}-x_{n_1}>\varepsilon_0\\ \vdots \\ N_k=n_{k - 1}\\ \end{align*}xn2−xn1>ε0⋮Nk=nk−1
then there exists nk>nk−1n_k>n_{k - 1}nk>nk−1 such that xnk−xnk−1>ε0x_{n_k}-x_{n_{k - 1}}>\varepsilon_0xnk−xnk−1>ε0. Adding up the above - listed inequalities, we get xnk−x1>kε0x_{n_k}-x_1>k\varepsilon_0xnk−x1>kε0. For any real number GGG, when k>G−x1ε0k>\frac{G - x_1}{\varepsilon_0}k>ε0G−x1, we have xnk>Gx_{n_k}>Gxnk>G. This contradicts the fact that {xn}\{x_n\}{xn} is bounded above.
Therefore, the sequence {xn}\{x_n\}{xn} has a limit.
Example
Let An=∑k=1nakA_n=\sum_{k = 1}^{n}a_kAn=∑k=1nak, and limn→∞An\lim\limits_{n \to \infty}A_nn→∞limAn exists. {pn}\{p_n\}{pn} is a sequence of positive numbers that is monotonically increasing, and pn→+∞p_n\to+\inftypn→+∞ as n→∞n\to\inftyn→∞. Prove that:limn→∞p1a1+p2a2+⋯+pnanpn=0\lim_{n \to \infty}\frac{p_1a_1 + p_2a_2+\cdots + p_na_n}{p_n}=0 n→∞limpnp1a1+p2a2+⋯+pnan=0
Prove
∑i=1npiaipn=∑i=2npi(Ai−Ai−1)+p1A1pn=∑i=1n−1(pi−pi+1)Ai+Anpnpn\begin{align*} \frac{\sum_{i=1}^np_ia_i}{p_n}&=\frac{\sum_{i=2}^np_i(A_i-A_{i-1})+p_1A_1}{p_n}\\ &=\frac{\sum_{i=1}^{n-1}(p_i-p_{i+1})A_i +A_np_n}{p_n} \end{align*} pn∑i=1npiai=pn∑i=2npi(Ai−Ai−1)+p1A1=pn∑i=1n−1(pi−pi+1)Ai+Anpn
So
limn→∞∑i=1npiaipn=limn→∞∑i=1n−1(pi−pi+1)Ai+Anpnpn=−A+A=0\begin{align*} \lim\limits_{n \to \infty}\frac{\sum_{i=1}^np_ia_i}{p_n} &=\lim\limits_{n \to \infty}\frac{\sum_{i=1}^{n-1}(p_i-p_{i+1})A_i +A_np_n}{p_n}\\ &=-A+A=0 \end{align*}n→∞limpn∑i=1npiai=n→∞limpn∑i=1n−1(pi−pi+1)Ai+Anpn=−A+A=0
Continuity and Limits of Functions
Example Letf(x)f(x)f(x)satisfy the functional equation f(2x)=f(x)f(2x)=f(x)f(2x)=f(x) on (0,+∞)(0, +\infty)(0,+∞), and
limx→+∞f(x)=A\lim\limits_{x \to +\infty}f(x) = Ax→+∞limf(x)=A .Prove that
f(x)≡Af(x)\equiv Af(x)≡A
for x∈(0,+∞)x\in(0, +\infty)x∈(0,+∞).
Prove
∀x0∈(0,+∞)\forall x_0 \in (0,+\infty)∀x0∈(0,+∞),we have
f(x0)=f(2x0)=⋯=f(2nx0)f(x_0)=f(2x_0)=\cdots=f(2^nx_0)f(x0)=f(2x0)=⋯=f(2nx0)
Let n→∞n \to \inftyn→∞
f(x0)=limn→∞f(2nx0)=f(limn→∞2nx0)=f(+∞)=Af(x_0)=\lim_{n\to \infty}f(2^nx_0)=f(\lim_{n\to \infty}2^nx_0)=f(+\infty)=Af(x0)=n→∞limf(2nx0)=f(n→∞lim2nx0)=f(+∞)=A
By arbitrariness of x0x_0x0,we have:
f(x)≡Af(x)\equiv A f(x)≡A
DefinitionnLet f:I→Rf:I\rightarrow\mathbb{R}f:I→R be a function. fff is said to be uniformly continuous on III if for every ε>0\varepsilon > 0ε>0, there exists a δ>0\delta>0δ>0 such that for all x1,x2∈Ix_1,x_2\in Ix1,x2∈I with ∣x1−x2∣<δ|x_1 - x_2|<\delta∣x1−x2∣<δ, we have ∣f(x1)−f(x2)∣<ε|f(x_1)-f(x_2)|<\varepsilon∣f(x1)−f(x2)∣<ε.
ExampleIf the function f(x)f(x)f(x) is continuous on [a,+∞)[a, +\infty)[a,+∞) and
limx→+∞f(x)=A\lim\limits_{x \to +\infty} f(x) = A x→+∞limf(x)=A
then f(x)f(x)f(x)is uniformly continuous on [a,+∞)[a, +\infty)[a,+∞).
Prove
Since limx→+∞f(x)=A\lim\limits_{x \to +\infty} f(x)=Ax→+∞limf(x)=A, for any ε>0\varepsilon> 0ε>0, there exists X>aX > aX>a such that for all x′,x′′>Xx', x'' > Xx′,x′′>X, the inequality ∣f(x′)−f(x′′)∣<ε|f(x') - f(x'')| < \varepsilon∣f(x′)−f(x′′)∣<ε holds. Because f(x)f(x)f(x) is continuous on [a,X+1][a, X + 1][a,X+1], it is uniformly continuous. That is, there exists 0<δ<10 < \delta < 10<δ<1 such that for all x′,x′′∈[a,X+1]x', x'' \in [a, X + 1]x′,x′′∈[a,X+1], when ∣x′−x′′∣<δ|x' - x''| < \delta∣x′−x′′∣<δ, ∣f(x′)−f(x′′)∣<ε|f(x') - f(x'')| < \varepsilon∣f(x′)−f(x′′)∣<ε. Then, for all x′,x′′∈[a,+∞)x', x'' \in [a, +\infty)x′,x′′∈[a,+∞), when ∣x′−x′′∣<δ|x' - x''| < \delta∣x′−x′′∣<δ, ∣f(x′)−f(x′′)∣<ε|f(x') - f(x'')| < \varepsilon∣f(x′)−f(x′′)∣<ε.
ExampleLet f(x)f(x)f(x) be continuous on [a,b][a, b][a,b], f(a)=f(b)=0f(a)=f(b) = 0f(a)=f(b)=0, and f+′(a)⋅f−′(b)>0f'_{+}(a)\cdot f'_{-}(b)>0f+′(a)⋅f−′(b)>0. Prove that f(x)f(x)f(x) has at least one zero point in (a,b)(a, b)(a,b).
Prove
- f+′(a)f'_{+}(a)f+′(a): The right - hand derivative of f(x)f(x)f(x) at x=ax = ax=a, defined as f+′(a)=limx→a+f(x)−f(a)x−a=limx→a+f(x)x−af'_{+}(a)=\lim\limits_{x\rightarrow a^{+}}\frac{f(x)-f(a)}{x - a}=\lim\limits_{x\rightarrow a^{+}}\frac{f(x)}{x - a}f+′(a)=x→a+limx−af(x)−f(a)=x→a+limx−af(x) (since f(a)=0f(a) = 0f(a)=0).
- f−′(b)f'_{-}(b)f−′(b): The left - hand derivative of f(x)f(x)f(x) at x=bx = bx=b, defined as f−′(b)=limx→b−f(x)−f(b)x−b=limx→b−f(x)x−bf'_{-}(b)=\lim\limits_{x\rightarrow b^{-}}\frac{f(x)-f(b)}{x - b}=\lim\limits_{x\rightarrow b^{-}}\frac{f(x)}{x - b}f−′(b)=x→b−limx−bf(x)−f(b)=x→b−limx−bf(x) (since f(b)=0f(b)=0f(b)=0).
Since f+′(a)⋅f−′(b)>0f'_{+}(a)\cdot f'_{-}(b)>0f+′(a)⋅f−′(b)>0, we can know that f+′(a)f'_{+}(a)f+′(a) and f−′(b)f'_{-}(b)f−′(b) have the same sign. Then, by the definition of one - sided derivatives, we can find two points x1∈(a,a+δ1)x_1\in(a,a + \delta_1)x1∈(a,a+δ1) and x2∈(b−δ2,b)x_2\in(b-\delta_2,b)x2∈(b−δ2,b) such that f(x1)f(x_1)f(x1) and f(x2)f(x_2)f(x2) have opposite signs . Then, by the Intermediate Value Theorem, there must be a zero point of f(x)f(x)f(x) in the interval (x1,x2)⊆(a,b)(x_1,x_2)\subseteq(a,b)(x1,x2)⊆(a,b).
Example
(xn−1e1x)(n)=(−1)nxn+1e1x\left(x^{n-1}e^{\frac{1}{x}}\right)^{(n)}=\frac{(-1)^n}{x^{n+1}}e^{\frac{1}{x}}(xn−1ex1)(n)=xn+1(−1)nex1
By Faà di Bruno’s Formula:
dndxnf(g(x))=∑n!m1!m2!⋯mn!⋅f(m1+m2+⋯+mn)(g(x))⋅∏j=1n(g(j)(x)j!)mj\frac{\mathrm{d}^n}{\mathrm{d}x^n} f(g(x)) = \sum \frac{n!}{m_1! \, m_2! \, \cdots \, m_n!} \cdot f^{(m_1 + m_2 + \cdots + m_n)}(g(x)) \cdot \prod_{j=1}^n \left( \frac{g^{(j)}(x)}{j!} \right)^{m_j} dxndnf(g(x))=∑m1!m2!⋯mn!n!⋅f(m1+m2+⋯+mn)(g(x))⋅j=1∏n(j!g(j)(x))mj
where:
The summation ∑\sum∑ ranges over all sets of non - negative integers m1,m2,…,mnm_1, m_2, \dots, m_nm1,m2,…,mn satisfying:
1⋅m1+2⋅m2+3⋅m3+⋯+n⋅mn=n1 \cdot m_1 + 2 \cdot m_2 + 3 \cdot m_3 + \cdots + n \cdot m_n = n1⋅m1+2⋅m2+3⋅m3+⋯+n⋅mn=n
(xn−1e1x)(n)=e1x∑k=0n−1(nk)(n−1)!(n−1−k)!xn−1−k∑1⋅m1+⋯+(n−k)⋅mn−k=n−k(n−k)!m1!⋯mn−k!∏j=1n−k[(−1)jxj+1]mj=M=m1+⋯+mn−ke1x∑k=0n−1(nk)(n−1)!(n−1−k)!xn−1−k⋅(−1)n−k⋅∑(n−k)!m1!⋯mn−k!⋅x−((n−k)+M)=唯一有效项为k=0xn−1⋅(−1)ne1x⋅x−2n=(−1)nxn+1e1x\begin{align*} \left(x^{n-1}e^{\frac{1}{x}}\right)^{(n)}&=e^{\frac{1}{x}}\sum_{k=0}^{n-1}\binom{n}{k}\frac{(n-1)!}{(n-1-k)!} x^{n-1-k}\sum_{\substack{1 \cdot m_1 + \cdots + (n-k) \cdot m_{n-k} = n-k}}\frac{(n-k)!}{m_1!\cdots m_{n-k}!}\prod_{j=1}^{n-k}\left[\frac{(-1)^j}{x^{j+1}}\right]^{m_j}\\ &\stackrel{M=m_1+\cdots +m_{n-k}}{=}e^{\frac{1}{x}}\sum_{k=0}^{n-1}\binom{n}{k}\frac{(n-1)!}{(n-1-k)!} x^{n-1-k}\cdot (-1)^{n-k} \cdot \sum \frac{(n-k)!}{m_1! \cdots m_{n-k}!} \cdot x^{-((n-k) + M)}\\ &\stackrel{\text{唯一有效项为}k = 0}{=}x^{n-1} \cdot (-1)^n e^{\frac{1}{x}} \cdot x^{-2n} = \frac{(-1)^n}{x^{n+1}} e^{\frac{1}{x}} \end{align*} (xn−1ex1)(n)=ex1k=0∑n−1(kn)(n−1−k)!(n−1)!xn−1−k1⋅m1+⋯+(n−k)⋅mn−k=n−k∑m1!⋯mn−k!(n−k)!j=1∏n−k[xj+1(−1)j]mj=M=m1+⋯+mn−kex1k=0∑n−1(kn)(n−1−k)!(n−1)!xn−1−k⋅(−1)n−k⋅∑m1!⋯mn−k!(n−k)!⋅x−((n−k)+M)=唯一有效项为k=0xn−1⋅(−1)nex1⋅x−2n=xn+1(−1)nex1
Mathematical induction is easy
# Advanced Math & Math Analysis |01 Limits, Continuous `Note: For simple definitions and corollaries, we will not elaborate.`@[toc]
## Some easy knowledge### Mathematical induction>**Theorem**
Let $T(n)$ is a proposition if:
>
>(1) $T(1)$ is true;
>
>(2)let $T(k)(k\ge 1)$ is true;
>
>(3) prove: $T(k+1)$is true.
>
>So $T(n)$ is true.**Example**Let $n\ge 1$ and $n\in \mathbb{N}$,prove $$n!< \left(\frac{n+1}{2}\right)^n$$**Proof**When $n = 2$, $2! = 2 < \frac{9}{4} = \left( \frac{2 + 1}{2} \right)^2$, and the proposition holds.Suppose the proposition holds when $n = k (k \geq 2)$, that is, $$ k! < \left( \frac{k + 1}{2} \right)^k $$When $n = k + 1$, $$ \begin{align*} (k + 1)!&= k!(k + 1)\\ &< \left( \frac{k + 2}{2} \cdot \frac{k + 1}{k + 2} \right)^k \cdot (k + 1)\\ &= \left( \frac{k + 2}{2} \right)^k \cdot \frac{(k + 1)^{k + 1}}{(k + 2)^k}\\ &= \frac{(k + 2)^{k + 1}}{2^k} \cdot \left( \frac{k + 1}{k + 2} \right)^{k + 1}\\ &= 2 \left( \frac{k + 2}{2} \right)^{k + 1} \cdot \frac{1}{\left( \frac{k + 2}{k + 1} \right)^{k + 1}}\\ &= 2 \left( \frac{k + 2}{2} \right)^{k + 1} \cdot \frac{1}{\left( 1 + \frac{1}{k + 1} \right)^{k + 1}} \end{align*} $$ By $(1+x)^n\ge 1+nx$,$x\in(-1,+\infty)$,$n\in \mathbb{N}_+$, we have $$ \left( 1 + \frac{1}{k + 1} \right)^{k + 1} > 1 + (k + 1) \cdot \frac{1}{k + 1} = 2 $$ So $$ (k + 1)! < 2 \left( \frac{k + 2}{2} \right)^{k + 1} \cdot \frac{1}{2} = \left( \frac{k + 2}{2} \right)^{k + 1} $$Thus, when $n = k + 1$, the proposition holds. The proof is completed. ### Some equation of trigonometric function### Inequality## Limits of sequence>**Example** Prove an open interval has no maximum value.**Proof**For any open continue interval $(a,b)$ can be mapping to $(0,1)$ , by$$f:\frac{x-a}{b-a}$$Suppose there exists a $\max \{(0,1)\} \stackrel{\scriptstyle\triangle}{=} \alpha $ ,we have$$
\begin{align*}&0< \frac{1}{2}\alpha <\frac{1}{2} \\&\Rightarrow \frac{1}{2} < \frac{\alpha +1}{2} <1
\end{align*}
$$Obviously,$$\alpha < \frac{\alpha +1}{2}$$This contradicts the assumption, so the assumption is wrong.>**Example** Let $T = \{ x \mid x \in \mathbb{Q} \text{ and } x > 0, x^2 < 2 \}$. Prove that $T$ has no upper bound within $\mathbb{Q}$.**Proof** Use proof by contradiction. Suppose $T$ has a least upper bound within $\mathbb{Q}$. Denote $\sup T = \frac{n}{m}$ (where $m, n \in \mathbb{N}^*$ and $m, n$ are coprime). Then, it is obvious that: $$ 1 < \left( \frac{n}{m} \right)^2 < 3 $$Since the square of a rational number cannot equal 2, there are only the following two possibilities: (1) $1 < \left( \frac{n}{m} \right)^2 < 2$: Let $2 - \frac{n^2}{m^2} = t$, then $0 < t < 1$. Let $r = \frac{n}{6m^2}t$. Obviously, $\frac{n}{m} + r > 0$, and $\frac{n}{m} + r \in \mathbb{Q}$. Since $r^2 = \frac{n^2}{36m^4}t^2 < \frac{1}{18}t$, and $\frac{2n}{m}r = \frac{n^2}{3m^3}t < \frac{2}{3}t$, we can obtain:
$$ \left( \frac{n}{m} + r \right)^2 - 2 = r^2 + \frac{2n}{m}r - t < 0 $$
This shows that $\frac{n}{m} + r \in T$, which contradicts the fact that $\frac{n}{m}$ is the least upper bound of $T$. (2) $2 < \left( \frac{n}{m} \right)^2 < 3$: Let $\frac{n^2}{m^2} - 2 = t$, then $0 < t < 1$. Let $r = \frac{n}{6m^2}t$. Obviously, $\frac{n}{m} - r > 0$, and $\frac{n}{m} - r \in \mathbb{Q}$. Since $\frac{2n}{m}r = \frac{n^2}{3m^3}t < t$, we can obtain:
$$ \left( \frac{n}{m} - r \right)^2 - 2 = r^2 - \frac{2n}{m}r + t > 0 $$
This shows that $\frac{n}{m} - r$ is also an upper bound of $T$, which contradicts the fact that $\frac{n}{m}$ is the least upper bound of $T$. >**Example** Caculate
>
>$$\lim_{n\to \infty} \frac{(2n-1)!!}{(2n)!!}$$
>and
>$$\lim_{n\to \infty}\sqrt{n} \frac{(2n-1)!!}{(2n)!!}$$**Solve**(1)$$\boxed{\lim_{n\to \infty} \frac{(2n-1)!!}{(2n)!!}=0}$$$$\begin{align*}
0\leq \lim_{n\to \infty} \frac{(2n-1)!!}{(2n)!!}&=\lim_{n\to \infty} \frac{\prod_{i=1}^n (2i-1)}{\prod_{i=1}^n (2i)}\\
&=\sqrt{\lim_{n\to \infty}\left( \frac{\prod_{i=1}^n (2i-1)}{\prod_{i=1}^n (2i)}\right)^2}
\\&\leq \sqrt{\lim_{n\to \infty} \frac{\left(\prod_{i=1}^n (2i-1)\right)^2}{\prod_{i=1}^n (2i+1)\prod_{i=1}^n (2i-1)}}\\
&=\sqrt{\lim_{n\to \infty} \frac{\prod_{i=1}^n (2i-1)}{\prod_{i=1}^n (2i+1)}}\\&=\sqrt{\lim_{n\to \infty} \frac{1}{2n+1}}
\\&=0
\end{align*}$$(2)$$\boxed{\lim_{n\to \infty}\sqrt{n} \frac{(2n-1)!!}{(2n)!!}=\frac{\sqrt{\pi}}{2}}$$$$
\begin{align*}
&\int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x \int_{0}^{\frac{\pi}{2}}\sin^{2n+1} x\mathrm{d}x \leq \left(\int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x\right)
^2 \leq \int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x\int_{0}^{\frac{\pi}{2}}\sin^{2n-1} x\mathrm{d}x
\\\Rightarrow & \frac{(2n-1)!!}{(2n)!!}\frac{(2n)!!}{(2n+1)!!}\frac{\pi}{2} \leq \left(\int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x\right)^2 \leq \frac{(2n-1)!!}{(2n)!!}\frac{(2n-2)!!}{(2n-1)!!}\frac{\pi}{2} \\
\\\Rightarrow & \frac{\pi}{2} \frac{1}{2n+1}\leq \left(\frac{(2n-1)!!}{(2n)!!}\right)^2 \leq \frac{1}{2n}\frac{\pi}{2}
\end{align*}
$$So$$\lim_{n\to \infty}\sqrt{n} \frac{(2n-1)!!}{(2n)!!}=\frac{\sqrt{\pi}}{2}$$> **Example**Caulate
>
>$$\lim_{n \to \infty}\sum_{i=0}^n \lambda ^i a_{n-i}$$**Solve**$$
\begin{align*}
\lim_{n \to \infty}\sum_{i=0}^n \lambda ^i a_{n-i}&=\lim_{n \to \infty}\sum_{i=0}^n \lambda ^{n-i} a_{i}\\
&=\lim_{n \to \infty}\lambda ^{n}\sum_{i=0}^n \frac{ a_{i}}{\lambda ^{i}}\\&=\lim_{n \to \infty}\frac{\sum_{i=0}^n \frac{ a_{i}}{\lambda ^{i}}}{\left(\frac{1}{\lambda}\right) ^{n}}
\\
&=\lim_{n \to \infty}\frac{ \frac{ a_{n}}{\lambda ^{n}}}{\left(\frac{1}{\lambda}\right) ^{n-1}\left(\frac{1}{\lambda}-1\right)}\\
&=\frac{a}{\lambda -1}
\end{align*}
$$>**Example** Please use Cauchy Convergence Principle prove :A monotonic and bounded sequence must converge.**Proof**Only prove the case where an increasing sequence bounded above must have a limit. Let's assume without loss of generality that $\{x_n\}$ is an increasing sequence bounded above. We will use the method of proof by contradiction to show that $\{x_n\}$ has a limit. Suppose that the sequence $\{x_n\}$ does not have a limit. According to the Cauchy convergence criterion, there exists $\varepsilon_0> 0$ such that for all $N$, there exist $n > N$ where $$|x_n - x_N|=x_n - x_N>\varepsilon_0$$Successively take $N_1 = 1$, then there exists $n_1>N_1$ such that $x_{n_1}-x_1 >\varepsilon_0$; $N_2 = n_1$, then there exists $n_2 > n_1$ such that $$
\begin{align*}
x_{n_2}-x_{n_1}>\varepsilon_0\\ \vdots \\
N_k=n_{k - 1}\\
\end{align*}$$
then there exists $n_k>n_{k - 1}$ such that $x_{n_k}-x_{n_{k - 1}}>\varepsilon_0$. Adding up the above - listed inequalities, we get $x_{n_k}-x_1>k\varepsilon_0$. For any real number $G$, when $k>\frac{G - x_1}{\varepsilon_0}$, we have $x_{n_k}>G$. This contradicts the fact that $\{x_n\}$ is bounded above. Therefore, the sequence $\{x_n\}$ has a limit. >**Example**Let $A_n=\sum_{k = 1}^{n}a_k$, and $\lim\limits_{n \to \infty}A_n$ exists. $\{p_n\}$ is a sequence of positive numbers that is monotonically increasing, and $p_n\to+\infty$ as $n\to\infty$. Prove that:
>
>$$
\lim_{n \to \infty}\frac{p_1a_1 + p_2a_2+\cdots + p_na_n}{p_n}=0
$$ **Prove**$$
\begin{align*}
\frac{\sum_{i=1}^np_ia_i}{p_n}&=\frac{\sum_{i=2}^np_i(A_i-A_{i-1})+p_1A_1}{p_n}\\
&=\frac{\sum_{i=1}^{n-1}(p_i-p_{i+1})A_i +A_np_n}{p_n}
\end{align*}
$$So$$
\begin{align*}
\lim\limits_{n \to \infty}\frac{\sum_{i=1}^np_ia_i}{p_n}
&=\lim\limits_{n \to \infty}\frac{\sum_{i=1}^{n-1}(p_i-p_{i+1})A_i +A_np_n}{p_n}\\
&=-A+A=0
\end{align*}$$>**Example**15. Let$f(x)$satisfy the functional equation $f(2x)=f(x)$ on $(0, +\infty)$, and
$\lim\limits_{x \to +\infty}f(x) = A$ .Prove that
>$$f(x)\equiv A$$
>for $x\in(0, +\infty)$. **Prove**$\forall x_0 \in (0,+\infty)$,we have
$$f(x_0)=f(2x_0)=\cdots=f(2^nx_0)$$
Let $n \to \infty$
$$f(x_0)=\lim_{n\to \infty}f(2^nx_0)=f(\lim_{n\to \infty}2^nx_0)=f(+\infty)=A$$By arbitrariness of $x_0$,we have:$$f(x)\equiv A $$>**Definitionn**Let $f:I\rightarrow\mathbb{R}$ be a function. $f$ is said to be **uniformly continuous** on $I$ if for every $\varepsilon > 0$, there exists a $\delta>0$ such that for all $x_1,x_2\in I$ with $|x_1 - x_2|<\delta$, we have $|f(x_1)-f(x_2)|<\varepsilon$.>**Example**If the function $f(x)$ is continuous on $[a, +\infty)$ and
>$$\lim\limits_{x \to +\infty} f(x) = A
>$$
>then $f(x)$is uniformly continuous on $[a, +\infty)$. **Prove**Since $\lim\limits_{x \to +\infty} f(x)=A$, for any $\varepsilon> 0$, there exists $X > a$ such that for all $x', x'' > X$, the inequality $|f(x') - f(x'')| < \varepsilon$ holds. Because $f(x)$ is continuous on $[a, X + 1]$, it is uniformly continuous. That is, there exists $0 < \delta < 1$ such that for all $x', x'' \in [a, X + 1]$, when $|x' - x''| < \delta$, $|f(x') - f(x'')| < \varepsilon$. Then, for all $x', x'' \in [a, +\infty)$, when $|x' - x''| < \delta$, $|f(x') - f(x'')| < \varepsilon$.
>**Example**Let $f(x)$ be continuous on $[a, b]$, $f(a)=f(b) = 0$, and $f'_{+}(a)\cdot f'_{-}(b)>0$. Prove that $f(x)$ has at least one zero point in $(a, b)$.**Prove**- $f'_{+}(a)$: The right - hand derivative of $f(x)$ at $x = a$, defined as $f'_{+}(a)=\lim\limits_{x\rightarrow a^{+}}\frac{f(x)-f(a)}{x - a}=\lim\limits_{x\rightarrow a^{+}}\frac{f(x)}{x - a}$ (since $f(a) = 0$).
- $f'_{-}(b)$: The left - hand derivative of $f(x)$ at $x = b$, defined as $f'_{-}(b)=\lim\limits_{x\rightarrow b^{-}}\frac{f(x)-f(b)}{x - b}=\lim\limits_{x\rightarrow b^{-}}\frac{f(x)}{x - b}$ (since $f(b)=0$). Since $f'_{+}(a)\cdot f'_{-}(b)>0$, we can know that $f'_{+}(a)$ and $f'_{-}(b)$ have the same sign. Then, by the definition of one - sided derivatives, we can find two points $x_1\in(a,a + \delta_1)$ and $x_2\in(b-\delta_2,b)$ such that $f(x_1)$ and $f(x_2)$ have opposite signs . Then, by the Intermediate Value Theorem, there must be a zero point of $f(x)$ in the interval $(x_1,x_2)\subseteq(a,b)$. >**Example**
>$$\left(x^{n-1}e^{\frac{1}{x}}\right)^{(n)}=\frac{(-1)^n}{x^{n+1}}e^{\frac{1}{x}}$$By **Faà di Bruno's Formula**: $$
\frac{\mathrm{d}^n}{\mathrm{d}x^n} f(g(x)) = \sum \frac{n!}{m_1! \, m_2! \, \cdots \, m_n!} \cdot f^{(m_1 + m_2 + \cdots + m_n)}(g(x)) \cdot \prod_{j=1}^n \left( \frac{g^{(j)}(x)}{j!} \right)^{m_j}
$$ where:
The summation $\sum$ ranges over all sets of non - negative integers $m_1, m_2, \dots, m_n$ satisfying:
$$1 \cdot m_1 + 2 \cdot m_2 + 3 \cdot m_3 + \cdots + n \cdot m_n = n$$ $$
\begin{align*}
\left(x^{n-1}e^{\frac{1}{x}}\right)^{(n)}&=e^{\frac{1}{x}}\sum_{k=0}^{n-1}\binom{n}{k}\frac{(n-1)!}{(n-1-k)!} x^{n-1-k}\sum_{\substack{1 \cdot m_1 + \cdots + (n-k) \cdot m_{n-k} = n-k}}\frac{(n-k)!}{m_1!\cdots m_{n-k}!}\prod_{j=1}^{n-k}\left[\frac{(-1)^j}{x^{j+1}}\right]^{m_j}\\
&\stackrel{M=m_1+\cdots +m_{n-k}}{=}e^{\frac{1}{x}}\sum_{k=0}^{n-1}\binom{n}{k}\frac{(n-1)!}{(n-1-k)!} x^{n-1-k}\cdot (-1)^{n-k} \cdot \sum \frac{(n-k)!}{m_1! \cdots m_{n-k}!} \cdot x^{-((n-k) + M)}\\
&\stackrel{\text{唯一有效项为}k = 0}{=}x^{n-1} \cdot (-1)^n e^{\frac{1}{x}} \cdot x^{-2n} = \frac{(-1)^n}{x^{n+1}} e^{\frac{1}{x}}
\end{align*}
$$`Mathematical induction is easy`