当前位置: 首页 > news >正文

ceph pools have too many placement groups

问题原因是是因为pg数大导致的:修复方法1:调整三个pool的pg数,修复方法2:按照下面的操作做。

[root@controller ~]# ceph -scluster:id:     8ad5bacc-b1d6-4954-adb4-8fd0bb9eab35health: HEALTH_WARN3 pools have too many placement groupsservices:mon: 3 daemons, quorum controller,compute01,compute02 (age 22m)mgr: compute02(active, since 9m), standbys: compute01, controllermds: cephfs:1 {0=compute01=up:active} 2 up:standbyosd: 9 osds: 9 up (since 56m), 9 in (since 4d)rgw: 3 daemons active (compute01.rgw0, compute02.rgw0, controller.rgw0)task status:data:pools:   9 pools, 528 pgsobjects: 249 objects, 12 MiBusage:   159 GiB used, 441 GiB / 600 GiB availpgs:     528 active+clean[root@controller ~]# ceph health detail
HEALTH_WARN 3 pools have too many placement groups
POOL_TOO_MANY_PGS 3 pools have too many placement groupsPool volumes has 128 placement groups, should have 32Pool images has 128 placement groups, should have 32Pool vms has 128 placement groups, should have 32
[root@controller ~]# ceph osd pool autoscale-status
POOL                  SIZE TARGET SIZE RATE RAW CAPACITY  RATIO TARGET RATIO EFFECTIVE RATIO BIAS PG_NUM NEW PG_NUM AUTOSCALE 
cephfs_metadata      4282               3.0       599.9G 0.0000                               4.0      8            off       
default.rgw.meta        0               3.0       599.9G 0.0000                               1.0     32            warn      
cephfs_data             0               3.0       599.9G 0.0000                               1.0      8         32 off       
default.rgw.control     0               3.0       599.9G 0.0000                               1.0     32            warn      
.rgw.root            1245               3.0       599.9G 0.0000                               1.0     32            warn      
volumes                 0               3.0       599.9G 0.0000                               1.0    128         32 warn      
images              12418k              3.0       599.9G 0.0001                               1.0    128         32 warn      
vms                     0               3.0       599.9G 0.0000                               1.0    128         32 warn      
default.rgw.log         0               3.0       599.9G 0.0000                               1.0     32            warn  

关闭mgr pg_autoscaler或者调整pg和pgp数量

[root@controller ~]# ceph mgr module disable pg_autoscaler
[root@controller ~]# ceph osd pool autoscale-status
Error ENOTSUP: Module 'pg_autoscaler' is not enabled (required by command 'osd pool autoscale-status'): use `ceph mgr module enable pg_autoscaler` to enable it

再次查看ceph集群状态

[root@controller ~]# ceph health detail
HEALTH_OK
[root@controller ~]#
[root@controller ~]# ceph -scluster:id:     8ad5bacc-b1d6-4954-adb4-8fd0bb9eab35health: HEALTH_OKservices:mon: 3 daemons, quorum controller,compute01,compute02 (age 22m)mgr: compute02(active, since 16s), standbys: compute01, controllermds: cephfs:1 {0=compute01=up:active} 2 up:standbyosd: 9 osds: 9 up (since 57m), 9 in (since 4d)rgw: 3 daemons active (compute01.rgw0, compute02.rgw0, controller.rgw0)task status:data:pools:   9 pools, 528 pgsobjects: 249 objects, 12 MiBusage:   159 GiB used, 441 GiB / 600 GiB availpgs:     528 active+clean
http://www.dtcms.com/a/334425.html

相关文章:

  • 0815 UDP通信协议TCP并发服务器
  • 【Java web】HTTP 协议详解
  • H20芯片与中国的科技自立:一场隐形的博弈
  • RK3568 NPU RKNN(四):RKNN-ToolKit2性能和内存评估
  • web-apache优化
  • Java Web部署
  • Python:如何在Pycharm中显示geemap地图?
  • Flutter InheritedWidget 详解:从生命周期到数据流动的完整解析
  • 开源数据发现平台:Amundsen Frontend Service React 配置 Flask 配置 Superset 预览集成
  • 教育行业破局:课程答疑智能体如何用“按次付费+算力限制”实现精准变现,可独立部署(井云智能体封装系统)
  • NLP:Transformer模型构建
  • 数字分类:机器学习经典案例解析
  • 通过rss订阅小红书,程序员将小红书同步到自己的github主页
  • MCU软件架构---RAM分区设计原则(四)
  • PyTorch生成式人工智能——使用MusicGen生成音乐
  • 二叉树的三种遍历方法
  • List容器:特性与操作使用指南
  • VS Code配置MinGW64编译GLPK(GNU Linear Programming Kit)开源库
  • 实现Android图片手势缩放功能的完整自定义View方案,结合了多种手势交互功能
  • 纸板制造制胶工艺学习记录4
  • Redis集群设计实战:从90%缓存命中率看高并发系统优化
  • Windows常见文件夹cache的作用还有其他缓存类型文件夹的作用
  • backward怎么计算的是torch.tensor(2.0, requires_grad=True)变量的梯度
  • 【论文阅读】Multimodal Graph Contrastive Learning for Multimedia-based Recommendation
  • Linux 下 安装 matlab 2025A
  • 机器学习——CountVectorizer将文本集合转换为 基于词频的特征矩阵
  • 软件的终极:为70亿人编写70亿个不同的软件
  • C++面试题及详细答案100道( 31-40 )
  • SysTick寄存器(嘀嗒定时器实现延时)
  • cPanel Python 应用部署流程