当前位置: 首页 > news >正文

sensor的成像波长和量子效应

量子效率(QE x FF)是衡量光电转化效率的重要指标,定义为入射光子和被像素收集到的电子的比例,通常用百分比表示。如量子效率50%,意味着每2 个照射到感光区域的光子可转化成1个电子。其中, FF(Fill Factor)为开口因子,是每个像元中有效感光面积与像元面积的百分比。像元尺寸越大或像元设计越合理有效, FF 越高,量子效率越高。对于背照式图像传感器,光信号不经金属遮挡,直接入射到感光区域,开口因子为100%。因此背照式图像传感器的量子效率较正照式器件有大幅提升。CCD 和CMOS 图像传感器的量子效率一般在一定波长范围内测定,如400nm – 800nm,峰值量子效率一般在550nm 左右。在400nm 以下和800nm 以上,图像传感器的量子效率会急速下降。受硅材料能级的限制,无论CMOS 还是CCD 器件,量子效率在1100nm 以上都下将到零。使用窄带半导体材料可实现对红外谱段的探测,但这些材料与标准CMOS 技术不兼容,因此不属于CMOS 图像传感器范畴。背照式图像传感器避免了正照器件表面二氧化硅层对紫外谱段的吸收,可实现对紫外谱段的探测。如在背照式工艺可对感光层表面进行加工,如添加紫外谱段抗反射镀膜,可在紫外谱段实现较高的量子效率。具备紫外探测能力的图像传感器在科学和工业应用中有非常广泛的用途,如光谱应用或高压设备故障检测等。如在图像传感器生产中采用加厚衬底材料,可增加红外谱段的吸收效率,实现在800nm 实现高于40%的量子效率。

http://www.dtcms.com/a/329282.html

相关文章:

  • 全面深入-JVM虚拟机
  • 多语言文本 AI 情感分析 API 数据接口
  • scikit-learn/sklearn学习|岭回归linear_model.Ridge()函数解读
  • 蓝桥杯备赛 按键、LCD、定时器
  • 变分自编码器VAE的Pytorch实现
  • 兰洋科技获第四届宁波市专利创新大赛殊荣,以液冷技术定义行业新标杆
  • 磁悬浮轴承转子动平衡:零接触旋转下的“隐形杀手”深度解析与精准猎杀指南
  • Java项目中地图功能如何创建
  • 使用 libpq 的 COPY 协议维护自定义 PG 到 PG 连接
  • 飞算JavaAI的中间件风暴:Redis + Kafka 全链路实战
  • WMware的安装以及Ubuntu22的安装
  • 自动驾驶中安全相关机器学习功能的可靠性定义方法
  • VirtualBox中的Ubuntu共享Windows的文件夹
  • 【Excel】被保护的文档如何显示隐藏的行或列
  • 厚铜PCB在百安级电流与高温环境中的关键作用
  • 普通电脑与云电脑的区别有哪些?全面科普
  • C++ 错误记录模块实现与解析
  • Redis:是什么、能做什么?
  • uniapp跨端性能优化方案
  • 各种排序算法(一)
  • Highcharts 图表示例|面积图与堆叠图(Area Stacked Chart)——让数据趋势更有层次感
  • SODA自然美颜相机(甜盐相机国际版) v9.3.0
  • LangChain是如何实现RAG多轮问答的
  • 【算法岗面试】手撕Self-Attention、Multi-head Attention
  • 比特币持有者结构性转变 XBIT分析BTC最新价格行情市场重构
  • 微店商品数据API接口的应用||电商API接口的应用
  • 数据结构与算法-选择题
  • 公司项目用户密码加密方案推荐(兼顾安全、可靠与通用性)
  • Chaos Vantage 2.8.1 发布:实时探索与材质工作流的全新突破
  • CacheBlend:结合缓存知识融合的快速RAG大语言模型推理服务