当前位置: 首页 > news >正文

【概念学习】深度学习有何不同

深度学习让解决问题变得更加简单,因为它将特征工程完全自动化,而这曾经是机器学习工作流程中最关键的一步。

先前的机器学习技术(浅层学习)仅包含将输入数据变换到一两个连续的表示空间,通常使用简单的变换,比如高维非线性投影(SVM)或决策树。但这些技术通常无法得到复杂问题所需要的精确表示。因此,人们必须竭尽全力让初始输入数据更适合这些方法处理,也必须手动为数据设计好的表示层。这叫作特征工程。与此相反,深度学习完全将这个步骤自动化:利用深度学习,你可以一次性学习所有特征,而无须自己手动设计。这极大地简化了机器学习工作流程,通常将复杂的多阶段流程替换为一个简单的、端到端的深度学习模型。

深度学习的变革性在于,模型可以在同一时间共同学习所有表示层,而不是依次连续学习(这被称为贪婪学习)。通过共同的特征学习,一旦模型修改某个内部特征,所有依赖于该特征的其他特征都会相应地自动调节适应,无须人为干预。一切都由单一反馈信号来监督:模型中的每一处变化都是为了最终目标服务。这种方法比贪婪地叠加浅层模型更加强大,因为它可以通过将复杂】抽象地表示拆解为很多个中间空间(层)来学习这些表示,每个中间空间仅仅是前一个空间的简单变换。

深度学习从数据中进行学习时有两个基本特征:第一,通过渐进的、逐层的方式形成越来越复杂的表示;第二,对中间这些渐进的表示共同进行学习。每一层的变化都需要同时考虑上下层的需要。总之,这两个特征使得深度学习比先前的机器学习方法更加成功。

http://www.dtcms.com/a/318012.html

相关文章:

  • 220降5V,30mA电流,墙壁开关和调光器应用场景WD5201
  • 【秋招笔试】2025.08.02-OPPO秋招第二套-第一题
  • Win10还未停更,对标iPad的教育版Win11也宣布停更了
  • Python爬虫 urllib 模块详细教程:零基础小白的入门指南
  • Pytest项目_day05(requests加入headers)
  • 项目中MySQL遇到的索引失效的问题
  • Conditional Modeling Based Automatic Video Summarization
  • Ubuntu20.04 离线安装 FFmpeg 静态编译包
  • 深度学习G5周:Pix2Pix理论与实战
  • Transformer模型及深度学习技术应用
  • 什么是 Kafka 中的消息?它由哪些部分组成
  • 高频面试点:深入理解 TCP 三次握手与四次挥手
  • mysql优化策略
  • qt qml实现电话簿 通讯录
  • [FBCTF2019]RCEService
  • apache-tomcat-11.0.9安装及环境变量配置
  • 认识MCP
  • java中普通流stream与并行流parallelStream的比较分析
  • Javascript/ES6+/Typescript重点内容篇——手撕(待总结)
  • 如何定位一个高并发场景下API响应时间从200ms突增到2s的问题
  • 数据结构---二级指针(应用场景)、内核链表、栈(系统栈、实现方式)、队列(实现方式、应用)
  • SQL168 统计作答次数
  • 简单介绍cgroups以及在K8s中的应用
  • DM数据库的安全版本SYSDBA无法修改其他用户密码?
  • 2025年COR SCI2区,船载AUV协同调度优化+海上风电机组水下检测,深度解析+性能实测
  • GPT-oss开源:200万小时淬炼AI Agent专属商用引擎
  • Vi与Vim的主要区别总结
  • Linux systemd 服务管理与 Firewall 防火墙配置
  • 【论文分析】【Agent】SEW: Self-Evolving Agentic Workflows for Automated Code Generatio
  • 从零开始的云计算生活——第三十八天,避坑落井,Docker容器模块