流匹配在翼型生成中的应用:完整实现指南
流匹配在翼型生成中的应用:完整实现指南
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家,觉得好请收藏。点击跳转到网站。
1. 流匹配技术简介及其在翼型生成中的应用
流匹配(Flow Matching)是连续归一化流(CNFs)的强大框架,为建模分布之间的概率路径提供了简单有效的方法。在翼型生成领域,流匹配具有以下优势:
- 高效采样:相比需要多步采样的扩散模型,流匹配可以用更少步骤生成样本
- 精确似然计算:支持精确的对数似然计算,便于模型评估
- 稳定训练:避免了GAN中常见的对抗训练动态不稳定的问题
对于翼型设计,流匹配可以从您的7,881个样本数据集中学习翼型形状的底层分布,这些样本每个都由二维空间中的201个点表示。这使得模型能够生成保持训练数据空气动力学特性的新颖、真实的翼型轮廓。
2. 理解翼型数据集
您的airfoil.npy数据集包含:
- 7,881个独立的翼型轮廓
- 每个轮廓由201个(x,y)坐标点组成
- 坐标已归一化到[-1, 1]范围
- 当前形状:(7881, 201, 2)
在继续之前,我们应该验证数据集结构:
import numpy as np# 加载翼型数据集
airfoils = np.load('airfoil.npy')# 验证形状和统计信息
print(f"数据集形状: {airfoils.shape}")
print(f"X坐标范围: [{airfoils[..., 0].min()}, {airfoils[..., 0].max()}]")
print(f"Y坐标范围: [{airfoils[..., 1].min()}, {airfoils[..., 1].max()}]")# 可视化部分样本
import matplotlib.pyplot as pltfig, axes = plt.subplots(3, 3, figsize=(12, 12))
for i, ax in enumerate(axes.flat):ax.plot(airfoils[i, :, 0], airfoils[i, :, 1])ax.set_aspect('equal')ax.axis('off')
plt.tight_layout()
plt.show()
3. 为流匹配准备数据集
我们需要调整翼型数据以适应流匹配:
import torch
from torch.utils.data import Dataset, DataLoader
from sklearn.model_selection import train_test_splitclass AirfoilDataset(Dataset):def __init__(self, data, split='train', test_size=0.1, random_state=42):assert split in ['train', 'val', 'test']# 分割数据train_val, test = train_test_split(data, test_size=test_size, random_state=random_state)train, val = train_test_split(train_val, test_size=test_size, random_state=random_state)if split == 'train':self.data = torch.tensor(train, dtype=torch.float32)elif split == 'val':self.data = torch.tensor(val, dtype=torch.float32)else:self.data = torch.tensor(test, dtype=torch.float32)def __len__(self):return len(self.data)def __getitem__(self, idx):return self.data[idx]@propertydef shape(self):return self.data.shape[1:]# 创建数据集
train_dataset = AirfoilDataset(airfoils, split='train')
val_dataset = AirfoilDataset(airfoils, split='val')
test_dataset = AirfoilDataset(airfoils, split='test')# 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=batch_size)
test_loader = DataLoader(test_dataset, batch_size=batch_size)
4. 实现流匹配模型
这是适用于翼型生成的完整流匹配模型实现:
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
from torch.optim.lr_scheduler import CosineAnnealingLR
from tqdm import tqdm
import mathclass SinusoidalPositionalEmbedding(nn.Module):def __init__(self, dim):super().__init__()self.dim = dimdef forward(self, t):device = t.devicehalf_dim = self.dim // 2emb = math.log(10000) / (half_dim - 1)emb = torch.exp(torch.arange(half_dim, device=device) * -emb)emb = t[:, None] * emb[None, :]emb = torch.cat((emb.sin(), emb.cos()), dim=-1)return embclass AirfoilFlowMatchingModel(nn.Module):def __init__(self, point_dim=2, num_points=201, hidden_dim=256, num_layers=4):super().__init__()self.num_points = num_pointsself.point_dim = point_dim# 时间嵌入self.time_embed_dim = hidden_dim // 2self.time_embed = SinusoidalPositionalEmbedding(self.time_embed_dim)self.time_mlp = nn.Sequential(nn.Linear(self.time_embed_dim, hidden_dim),nn.SiLU(),nn.Linear(hidden_dim, hidden_dim))# 逐点处理self.input_proj = nn.Linear(point_dim, hidden_dim)# 主要处理层self.layers = nn.ModuleList()for _ in range(num_layers):layer = nn.ModuleDict({'norm': nn.LayerNorm(hidden_dim),'linear1': nn.Linear(hidden_dim, hidden_dim),'linear2': nn.Linear(hidden_dim, hidden_dim),'attn': nn.MultiheadAttention(hidden_dim, num_heads=4, batch_first=True)})self.layers.append(layer)# 输出投影self.output_proj = nn.Sequential(nn.LayerNorm(hidden_dim),nn.Linear(hidden_dim, hidden_dim),nn.SiLU(),nn.Linear(hidden_dim, point_dim))def forward(self, x, t):# x: (batch_size, num_points, point_dim)# t: (batch_size,)# 时间嵌入temb = self.time_embed(t) # (batch_size, time_embed_dim)temb = self.time_mlp(temb) # (batch_size, hidden_dim)temb = temb.unsqueeze(1) # (batch_size, 1, hidden_dim)# 点特征h = self.input_proj(x) # (batch_size, num_points, hidden_dim)# 添加时间嵌入h = h + temb# 通过各层处理for layer in self.layers:# 自注意力residual = hh = layer['norm'](h)attn_out, _ = layer['attn'](h, h, h)h = residual + attn_out# MLPresidual = hh = layer['norm'](h)h = layer['linear1'](h)h = F.silu(h)h = layer['linear2'](h)h = residual + h# 输出投影out = self.output_proj(h)return out
5. 实现流匹配算法
流匹配算法的核心包含几个关键组件:
class FlowMatching:def __init__(self, sigma=0.1):self.sigma = sigmadef sample_prior(self, shape, device):"""从先验分布(标准高斯)中采样"""return torch.randn(shape, device=device)def sample_t(self, batch_size, device):"""均匀采样时间"""return torch.rand(batch_size, device=device)def sample_conditional_prior(self, x1, t):"""从条件先验p_t(x|x1)中采样x1: 目标形状 (batch_size, num_points, point_dim)t: 时间 (batch_size,)"""batch_size, num_points, point_dim = x1.shapet = t.view(batch_size, 1, 1) # 为广播重塑形状# 在噪声和数据之间插值mu_t = t * x1sigma_t = self.sigma * (1 - (1 - self.sigma) * t)# 从条件先验中采样eps = torch.randn_like(x1)x_t = mu_t + sigma_t * epsreturn x_t, epsdef compute_loss(self, model, x1):"""计算流匹配损失model: 神经网络x1: 目标翼型 (batch_size, num_points, point_dim)"""batch_size = x1.shape[0]device = x1.device# 采样时间t = self.sample_t(batch_size, device)# 从条件先验中采样x_t, eps = self.sample_conditional_prior(x1, t)# 预测向量场pred = model(x_t, t)# 计算损失loss = F.mse_loss(pred, eps, reduction='mean')return lossdef sample(self, model, num_samples, num_points, point_dim=2, num_steps=100, device='cpu'):"""使用学习到的流生成样本"""model.eval()# 从先验中获取初始样本x = self.sample_prior((num_samples, num_points, point_dim), device)# 时间步长times = torch.linspace(0, 1, num_steps + 1, device=device)# 逆向过程(欧拉方法)with torch.no_grad():for i in range(num_steps):t = times[num_steps - i - 1] * torch.ones(num_samples, device=device)# 预测向量场v = model(x, t)# 更新样本dt = 1.0 / num_stepsx = x + v * dtreturn x
6. 训练循环和评估
包含验证和采样的完整训练过程:
def train_flow_matching(model, train_loader, val_loader, num_epochs=1000, lr=1e-3, device='cuda'):# 初始化model = model.to(device)fm = FlowMatching(sigma=0.1)optimizer = optim.AdamW(model.parameters(), lr=lr)scheduler = CosineAnnealingLR(optimizer, T_max=num_epochs)best_val_loss = float('inf')for epoch in range(num_epochs):# 训练model.train()train_loss = 0.0pbar = tqdm(train_loader, desc=f"Epoch {epoch+1}/{num_epochs} [Train]")for x1 in pbar:x1 = x1.to(device)# 计算损失optimizer.zero_grad()loss = fm.compute_loss(model, x1)# 反向传播loss.backward()optimizer.step()train_loss += loss.item() * x1.size(0)pbar.set_postfix({'loss': loss.item()})train_loss /= len(train_loader.dataset)scheduler.step()# 验证model.eval()val_loss = 0.0with torch.no_grad():for x1 in val_loader:x1 = x1.to(device)loss = fm.compute_loss(model, x1)val_loss += loss.item() * x1.size(0)val_loss /= len(val_loader.dataset)print(f"Epoch {epoch+1}: Train Loss = {train_loss:.6f}, Val Loss = {val_loss:.6f}")# 保存最佳模型if val_loss < best_val_loss:best_val_loss = val_losstorch.save(model.state_dict(), 'best_airfoil_flow_matching.pth')# 定期生成样本if (epoch + 1) % 50 == 0:samples = fm.sample(model, num_samples=9, num_points=201, device=device, num_steps=100)samples = samples.cpu().numpy()# 绘制样本fig, axes = plt.subplots(3, 3, figsize=(12, 12))for i, ax in enumerate(axes.flat):ax.plot(samples[i, :, 0], samples[i, :, 1])ax.set_aspect('equal')ax.axis('off')plt.tight_layout()plt.savefig(f'samples_epoch_{epoch+1}.png')plt.close()return model
7. 运行训练
初始化和运行训练过程:
# 初始化模型
point_dim = 2 # (x,y)坐标
num_points = 201 # 每个翼型的点数
model = AirfoilFlowMatchingModel(point_dim=point_dim, num_points=num_points)# 训练模型
device = 'cuda' if torch.cuda.is_available() else 'cpu'
trained_model = train_flow_matching(model, train_loader, val_loader, num_epochs=1000, lr=1e-3, device=device)
8. 翼型生成的评估指标
我们需要特定的指标来评估生成的翼型质量:
def evaluate_airfoils(real_airfoils, generated_airfoils):"""评估生成的翼型与真实翼型的对比real_airfoils: (N, 201, 2)generated_airfoils: (M, 201, 2)"""real_airfoils = torch.tensor(real_airfoils, dtype=torch.float32)generated_airfoils = torch.tensor(generated_airfoils, dtype=torch.float32)# 1. MMD(最大均值差异)def compute_mmd(x, y, kernel='rbf', gamma=None):if gamma is None:gamma = 1.0 / x.shape[1]xx = torch.pdist(x, p=2).pow(2).mean()yy = torch.pdist(y, p=2).pow(2).mean()xy = torch.cdist(x, y, p=2).pow(2).mean()if kernel == 'rbf':Kxx = torch.exp(-gamma * xx)Kyy = torch.exp(-gamma * yy)Kxy = torch.exp(-gamma * xy)elif kernel == 'linear':Kxx = xxKyy = yyKxy = xyelse:raise ValueError(f"未知核函数: {kernel}")mmd = Kxx + Kyy - 2 * Kxyreturn mmd.item()mmd_rbf = compute_mmd(real_airfoils.reshape(len(real_airfoils), -1),generated_airfoils.reshape(len(generated_airfoils), -1),kernel='rbf')# 2. 覆盖率(基于最近邻距离)def compute_coverage(real, gen, k=5):# 展平翼型real_flat = real.reshape(len(real), -1)gen_flat = gen.reshape(len(gen), -1)# 计算成对距离distances = torch.cdist(real_flat, gen_flat)# 对于每个真实翼型,找到最近的生成翼型的距离min_distances, _ = distances.min(dim=1)# 覆盖率是在阈值内有生成邻居的真实翼型的比例threshold = distances.kthvalue(k, dim=1).values.mean()coverage = (min_distances < threshold).float().mean()return coverage.item()coverage = compute_coverage(real_airfoils, generated_airfoils)# 3. 物理有效性检查def check_physical_validity(airfoils):# 检查自相交def has_self_intersections(points):from scipy.spatial import KDTreetree = KDTree(points)distances, _ = tree.query(points, k=2)return (distances[:, 1] < 1e-4).any()valid = []for airfoil in airfoils:points = airfoil.numpy()valid.append(not has_self_intersections(points))return np.mean(valid)validity = check_physical_validity(generated_airfoils)return {'mmd_rbf': mmd_rbf,'coverage': coverage,'physical_validity': validity}
9. 提高性能的高级技术
为了增强模型性能,我们可以实现几种高级技术:
9.1. 多尺度处理
class MultiScaleAirfoilModel(nn.Module):def __init__(self, point_dim=2, num_points=201, hidden_dim=256, num_layers=4):super().__init__()# 下采样层self.downsample1 = nn.Sequential(nn.Linear(point_dim, hidden_dim),nn.LayerNorm(hidden_dim),nn.SiLU(),nn.Linear(hidden_dim, hidden_dim))self.downsample2 = nn.Sequential(nn.Linear(hidden_dim, hidden_dim * 2),nn.LayerNorm(hidden_dim * 2),nn.SiLU(),nn.Linear(hidden_dim * 2, hidden_dim * 2))# 上采样层self.upsample2 = nn.Sequential(nn.Linear(hidden_dim * 2, hidden_dim),nn.LayerNorm(hidden_dim),nn.SiLU(),nn.Linear(hidden_dim, hidden_dim))self.upsample1 = nn.Sequential(nn.Linear(hidden_dim, point_dim),nn.LayerNorm(point_dim))# 时间嵌入self.time_embed_dim = hidden_dim // 2self.time_embed = SinusoidalPositionalEmbedding(self.time_embed_dim)self.time_mlp = nn.Sequential(nn.Linear(self.time_embed_dim, hidden_dim),nn.SiLU(),nn.Linear(hidden_dim, hidden_dim))def forward(self, x, t):# 时间嵌入temb = self.time_embed(t)temb = self.time_mlp(temb)# 下采样1h1 = self.downsample1(x)h1 = h1 + temb.unsqueeze(1)# 下采样2h2 = self.downsample2(h1)h2 = h2 + temb.unsqueeze(1)# 上采样2h = self.upsample2(h2)h = h + h1 # 跳跃连接# 上采样1out = self.upsample1(h)return out
9.2. 自适应时间采样
class AdaptiveFlowMatching(FlowMatching):def __init__(self, sigma=0.1, alpha=0.3):super().__init__(sigma)self.alpha = alphaself.time_hist = []def sample_t(self, batch_size, device):"""基于近期损失的自适应时间采样"""if len(self.time_hist) < 100:# 从均匀采样开始return torch.rand(batch_size, device=device)# 计算近期时间的直方图hist, bins = np.histogram(self.time_hist, bins=10, range=(0, 1))probs = 1.0 / (hist + 1e-6)probs = probs ** self.alphaprobs = probs / probs.sum()# 根据逆频率采样bin_choices = np.random.choice(len(probs), size=batch_size, p=probs)t_samples = np.random.uniform(bins[bin_choices], bins[bin_choices + 1])return torch.tensor(t_samples, dtype=torch.float32, device=device)def compute_loss(self, model, x1):batch_size = x1.shape[0]device = x1.device# 自适应采样时间t = self.sample_t(batch_size, device)# 存储时间用于自适应采样self.time_hist.extend(t.cpu().numpy())if len(self.time_hist) > 1000:self.time_hist = self.time_hist[-1000:]# 其余计算保持不变x_t, eps = self.sample_conditional_prior(x1, t)pred = model(x_t, t)loss = F.mse_loss(pred, eps, reduction='mean')return loss
10. 部署和实际考虑
10.1. 保存和加载模型
def save_model(model, optimizer, epoch, path):torch.save({'model_state_dict': model.state_dict(),'optimizer_state_dict': optimizer.state_dict(),'epoch': epoch}, path)def load_model(model, optimizer, path):checkpoint = torch.load(path)model.load_state_dict(checkpoint['model_state_dict'])optimizer.load_state_dict(checkpoint['optimizer_state_dict'])epoch = checkpoint['epoch']return model, optimizer, epoch
10.2. 生成具有特定属性的翼型
我们可以基于特定属性条件生成:
class ConditionalAirfoilModel(nn.Module):def __init__(self, point_dim=2, num_points=201, hidden_dim=256, num_layers=4, condition_dim=3):super().__init__()# 条件嵌入(如厚度、弯度等)self.condition_proj = nn.Sequential(nn.Linear(condition_dim, hidden_dim),nn.SiLU(),nn.Linear(hidden_dim, hidden_dim))# 原始模型组件self.model = AirfoilFlowMatchingModel(point_dim=point_dim,num_points=num_points,hidden_dim=hidden_dim,num_layers=num_layers)def forward(self, x, t, condition):# 嵌入条件cemb = self.condition_proj(condition)cemb = cemb.unsqueeze(1) # (batch_size, 1, hidden_dim)# 原始模型前向out = self.model(x, t)# 添加条件信息out = out + cembreturn outdef compute_airfoil_properties(airfoil):"""计算用于条件化的基本翼型属性"""# airfoil: (201, 2)x, y = airfoil[:, 0], airfoil[:, 1]# 厚度(上下表面之间的最大距离)thickness = y.max() - y.min()# 弯度(距弦线的最大距离)chord_line = np.linspace(y[0], y[-1], len(y))camber = np.max(np.abs(y - chord_line))# 前缘半径(近似)le_points = y[:20] # 查看前20个点作为前缘radius = np.polyfit(x[:20], le_points, 2)[0]return np.array([thickness, camber, radius])
11. 完整流程示例
将所有内容整合在一起:
def main():# 1. 加载和准备数据airfoils = np.load('airfoil.npy')train_dataset = AirfoilDataset(airfoils, split='train')val_dataset = AirfoilDataset(airfoils, split='val')# 2. 创建数据加载器batch_size = 64train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)val_loader = DataLoader(val_dataset, batch_size=batch_size)# 3. 初始化模型和训练device = 'cuda' if torch.cuda.is_available() else 'cpu'model = AirfoilFlowMatchingModel(point_dim=2, num_points=201).to(device)optimizer = optim.AdamW(model.parameters(), lr=1e-3)# 4. 训练num_epochs = 1000fm = FlowMatching(sigma=0.1)for epoch in range(num_epochs):# 训练循环model.train()train_loss = 0.0for x1 in train_loader:x1 = x1.to(device)optimizer.zero_grad()loss = fm.compute_loss(model, x1)loss.backward()optimizer.step()train_loss += loss.item() * x1.size(0)train_loss /= len(train_loader.dataset)# 验证model.eval()val_loss = 0.0with torch.no_grad():for x1 in val_loader:x1 = x1.to(device)loss = fm.compute_loss(model, x1)val_loss += loss.item() * x1.size(0)val_loss /= len(val_loader.dataset)print(f"Epoch {epoch+1}: Train Loss = {train_loss:.6f}, Val Loss = {val_loss:.6f}")# 定期生成样本if (epoch + 1) % 100 == 0:samples = fm.sample(model, num_samples=9, num_points=201, device=device)samples = samples.cpu().numpy()# 绘制并保存样本fig, axes = plt.subplots(3, 3, figsize=(12, 12))for i, ax in enumerate(axes.flat):ax.plot(samples[i, :, 0], samples[i, :, 1])ax.set_aspect('equal')ax.axis('off')plt.tight_layout()plt.savefig(f'samples_epoch_{epoch+1}.png')plt.close()# 5. 最终评估test_dataset = AirfoilDataset(airfoils, split='test')test_loader = DataLoader(test_dataset, batch_size=batch_size)# 生成测试样本test_samples = fm.sample(model, num_samples=100, num_points=201, device=device)test_samples = test_samples.cpu().numpy()# 获取真实测试样本real_test = test_dataset.data.numpy()# 评估metrics = evaluate_airfoils(real_test, test_samples)print("评估指标:")print(f" MMD (RBF): {metrics['mmd_rbf']:.4f}")print(f" 覆盖率: {metrics['coverage']:.4f}")print(f" 物理有效性: {metrics['physical_validity']:.4f}")# 保存最终模型torch.save(model.state_dict(), 'final_airfoil_flow_matching.pth')if __name__ == "__main__":main()
12. 结论和未来方向
这个全面的实现提供了在翼型数据上训练流匹配模型的完整流程。该方法的主要优势包括:
- 高质量生成:流匹配可以产生真实的翼型形状
- 高效采样:与扩散模型相比,流匹配需要更少的步骤
- 灵活性:架构可以适应各种翼型表示
为了进一步改进,考虑:
- 将物理约束直接纳入损失函数
- 添加空气动力学属性的条件化
- 实现多分辨率翼型的层次生成
- 探索潜在空间操作以进行可控生成
提供的代码为空气动力学设计和优化中的特定应用提供了可扩展的坚实基础。