当前位置: 首页 > news >正文

Day58

1. 时序建模流程

◦ 数据预处理:收集时间序列数据,按时间排序,处理缺失值(如插值法)、异常值(如替换或删除),确保时间间隔一致。

◦ 可视化探索:绘制时序图,直观观察数据是否有趋势(上升/下降)、季节性(固定周期重复)、周期性或随机波动。

◦ 平稳性检验:通过ADF检验(原假设为非平稳),若p值>0.05则需处理;也可结合ACF图(缓慢衰减说明非平稳)。

◦ 模型选择与训练:根据数据特征选模型(如非平稳且无季节用ARIMA,有季节用SARIMA),确定参数后用历史数据训练。

◦ 评估与预测:用测试集计算MSE、MAE等,残差需接近白噪声;合格后用模型预测未来值。

2. 经典单变量数据集

◦ 航空乘客(AirPassengers):144个数据点(12年×12月),随时间增长(趋势),且每年夏季乘客更多(季节性),是展示时序特征的典型案例。

◦ 太阳黑子(sunspots):记录多年太阳黑子数量,呈现约11年的周期性,适合分析周期性波动。

◦ 电力负荷数据:如某地区每小时用电量,受昼夜(短期)、季节(长期)影响,含趋势和日内/季节性特征。

3. ARIMA(p,d,q)模型实战

◦ 定d:对数据做1阶差分(y_t - y_{t-1}),若仍非平稳则做2阶(极少超过2阶),直到ADF检验显著(p≤0.05)。

◦ 定p/q:平稳后看ACF/PACF:若PACF在p阶后截尾(突然接近0),则p为该阶;ACF在q阶后截尾,则q为该阶(通常p、q取0-3)。

◦ 模型拟合与检验:用选定参数建模,输出残差;若残差ACF无显著滞后相关(都在置信区间内),且Ljung-Box检验p值>0.05,说明残差是白噪声,模型有效。

4. SARIMA摘要图的理解

◦ SARIMA参数:(p,d,q)×(P,D,Q)_s,s为季节周期(如月度数据s=12)。

◦ 摘要图关注:各参数(含季节项)的p值(<0.05说明显著);残差ACF/PACF(无显著峰值,即无未提取的相关性);AIC/BIC值(越小模型越简洁有效)。

5. 处理不平稳的2种差分

◦ n阶差分:用于消除趋势。例如,线性增长数据经1阶差分后趋势消失;二次趋势可能需2阶差分(公式:Δ^n y_t = Δ^{n-1} y_t - Δ^{n-1} y_{t-1})。

◦ 季节性差分:用于消除季节性。公式:Δ_s y_t = y_t - y_{t-s}(如月度数据s=12,即今年1月减去年1月),可结合n阶差分使用(先去趋势再去季节,或反之)。

http://www.dtcms.com/a/274021.html

相关文章:

  • 深度学习篇---松科TPU部署代码分析
  • 线程邮箱(线程间通信的异步缓存机制)
  • 数据分析师如何构建自己的底层逻辑?
  • 数据结构自学Day5--链表知识总结
  • 基于FP6195的60V宽压输入降压电源方案 - 适用于智能家居模块供电
  • 亚洲零售行业发展趋势洞察
  • P5709 【深基2.习6】Apples Prologue / 苹果和虫子
  • Python—文件操作
  • 从语音识别到智能助手:Voice Agent 的技术进化与交互变革丨Voice Agent 学习笔记
  • Django 模型(Model)
  • k8s服务发布进阶
  • k8s-高级调度(一)
  • k8s深度讲解:无限的扩展性 - CRD 与 Operator
  • Rust 变量遮蔽(Variable Shadowing)
  • Rust与UE5高效集成实战
  • 湖南群狼市场调查——专注汽车销售服务深度评测
  • 如何快速学习GO语言
  • ajax和XMLHttpRequest以及fetch
  • Rust基础-part2-变量和可变类型
  • C#中的设计模式:构建更加优雅的代码
  • 学弟让我帮忙写一个学生管理系统的后端,我直接上科技
  • 数据结构 之 【链式二叉树】(C语言实现二叉树的前序中序后序层序遍历,节点个数、树的高度、第K层的节点个数、查找、完全二叉树的判别、销毁创建二叉树)
  • 操作系统-进程
  • 加工进化论:SPL 一键加速日志转指标
  • 适配多场景,工业显示器让操作更高效
  • 2025最新版Docker讲解/面试/命令/容器化技术
  • 当信任上链解码区块链溯源系统开发逻辑与产业变革
  • 【第四节】ubuntu server安装docker
  • 专题:2025云计算与AI技术研究趋势报告|附200+份报告PDF、原数据表汇总下载
  • 探索飞算 JavaAI 进阶:解锁高效Java开发的新维度