【一起来学AI大模型】算法核心:数组/哈希表/树/排序/动态规划(LeetCode精练)
以下是五大核心算法的重点解析和LeetCode经典题解,包含最优解法和模板代码:
一、数组操作(双指针/滑动窗口)
核心思想:通过索引指针高效遍历与操作数组
1. 移动零(No.283)
def moveZeroes(nums):slow = 0for fast in range(len(nums)):if nums[fast] != 0:nums[slow], nums[fast] = nums[fast], nums[slow]slow += 1
2. 盛最多水的容器(No.11)
def maxArea(height):left, right = 0, len(height)-1max_area = 0while left < right:area = min(height[left], height[right]) * (right - left)max_area = max(max_area, area)if height[left] < height[right]:left += 1else:right -= 1return max_area
3. 最小覆盖子串(No.76)滑动窗口模板
def minWindow(s, t):from collections import Counterneed = Counter(t)missing = len(t)left = start = end = 0for right, char in enumerate(s, 1):if need[char] > 0:missing -= 1need[char] -= 1if missing == 0: # 窗口满足条件# 收缩左边界while left < right and need[s[left]] < 0:need[s[left]] += 1left += 1# 更新结果if not end or right-left <= end-start:start, end = left, right# 移动左边界need[s[left]] += 1missing += 1left += 1return s[start:end]
二、哈希表应用(快速查找)
核心思想:空间换时间,实现O(1)查找
1. 两数之和(No.1)
def twoSum(nums, target):seen = {}for i, num in enumerate(nums):if target - num in seen:return [seen[target-num], i]seen[num] = ireturn []
2. 字母异位词分组(No.49)
def groupAnagrams(strs):from collections import defaultdictd = defaultdict(list)for s in strs:key = ''.join(sorted(s))d[key].append(s)return list(d.values())
3. 最长连续序列(No.128)
def longestConsecutive(nums):num_set = set(nums)max_len = 0for num in num_set:# 确保从序列起点开始if num-1 not in num_set:curr = numcurr_len = 1while curr+1 in num_set:curr += 1curr_len += 1max_len = max(max_len, curr_len)return max_len
三、树形结构(递归/迭代)
核心思想:分治思想处理子树,栈/队列辅助迭代
1. 二叉树的最大深度(No.104)
# 递归
def maxDepth(root):if not root: return 0return 1 + max(maxDepth(root.left), maxDepth(root.right))# 迭代(BFS)
from collections import deque
def maxDepth(root):if not root: return 0queue = deque([root])depth = 0while queue:depth += 1for _ in range(len(queue)):node = queue.popleft()if node.left: queue.append(node.left)if node.right: queue.append(node.right)return depth
2. 验证二叉搜索树(No.98)
def isValidBST(root):def valid(node, low=-float('inf'), high=float('inf')):if not node: return Trueif node.val <= low or node.val >= high:return Falsereturn (valid(node.left, low, node.val) and valid(node.right, node.val, high))return valid(root)
3. 二叉树的最近公共祖先(No.236)
def lowestCommonAncestor(root, p, q):if not root or root == p or root == q:return rootleft = lowestCommonAncestor(root.left, p, q)right = lowestCommonAncestor(root.right, p, q)if left and right: return rootreturn left if left else right
四、排序算法(归并/快排)
核心思想:分治策略实现高效排序
1. 快速排序模板
def quick_sort(arr, l, r):if l >= r: return# 分区操作pivot = partition(arr, l, r)quick_sort(arr, l, pivot-1)quick_sort(arr, pivot+1, r)def partition(arr, l, r):import random# 随机选择基准避免最坏情况rand_idx = random.randint(l, r)arr[rand_idx], arr[r] = arr[r], arr[rand_idx]pivot_val = arr[r]i = lfor j in range(l, r):if arr[j] < pivot_val:arr[i], arr[j] = arr[j], arr[i]i += 1arr[i], arr[r] = arr[r], arr[i]return i
2. 合并区间(No.56)
def merge(intervals):intervals.sort(key=lambda x: x[0])merged = []for interval in intervals:if not merged or merged[-1][1] < interval[0]:merged.append(interval)else:merged[-1][1] = max(merged[-1][1], interval[1])return merged
3. 数组中的第K个最大元素(No.215)
def findKthLargest(nums, k):import heapqmin_heap = []for num in nums:heapq.heappush(min_heap, num)if len(min_heap) > k:heapq.heappop(min_heap)return min_heap[0]
五、动态规划(状态转移)
核心思想:定义状态与状态转移方程,避免重复计算
1. 爬楼梯(No.70)基础模板
def climbStairs(n):if n <= 2: return ndp = [0]*(n+1)dp[1], dp[2] = 1, 2for i in range(3, n+1):dp[i] = dp[i-1] + dp[i-2]return dp[n]
2. 最长递增子序列(No.300)
# 标准DP解法 O(n²)
def lengthOfLIS(nums):dp = [1]*len(nums)for i in range(1, len(nums)):for j in range(i):if nums[i] > nums[j]:dp[i] = max(dp[i], dp[j]+1)return max(dp)# 贪心+二分 O(nlogn)
def lengthOfLIS(nums):tails = [] # 存储最小尾部元素for num in nums:# 二分查找插入位置l, r = 0, len(tails)while l < r:mid = (l+r)//2if tails[mid] < num:l = mid+1else:r = midif l == len(tails):tails.append(num)else:tails[l] = numreturn len(tails)
3. 编辑距离(No.72)经典二维DP
def minDistance(word1, word2):m, n = len(word1), len(word2)dp = [[0]*(n+1) for _ in range(m+1)]# 初始化边界for i in range(1, m+1): dp[i][0] = ifor j in range(1, n+1): dp[0][j] = jfor i in range(1, m+1):for j in range(1, n+1):if word1[i-1] == word2[j-1]:dp[i][j] = dp[i-1][j-1]else:dp[i][j] = 1 + min(dp[i-1][j], # 删除dp[i][j-1], # 插入dp[i-1][j-1] # 替换)return dp[m][n]
六、综合训练题库(按难度排序)
类别 | 基础题(掌握模板) | 进阶题(应用变形) | 挑战题(综合优化) |
---|---|---|---|
数组 | 26/27/283/167 | 11/15/16/238 | 42/128/239/295 |
哈希表 | 1/202/242 | 49/560/763 | 30/76/146/460 |
树 | 100/101/104/226 | 102/105/236 | 124/297/337 |
排序 | 75/88/147 | 148/179/215 | 56/164/315 |
DP | 70/118/121 | 62/64/139/198 | 72/152/312/322 |
高效训练建议:
每日专项训练:每天专注1个算法类型(如周一数组/周二哈希表)
三遍刷题法:
第一遍:独立解题(30分钟)
第二遍:学习最优解并复现
第三遍:隔周重做+总结模板
重点突破:
双指针(数组/字符串)
回溯法(树形问题)
状态机(动态规划)
堆应用(排序/TOP K问题)
核心技巧:
-
数组:左右指针/快慢指针/前缀和
-
哈希表:空间换时间/计数器
-
树:递归三要素(终止条件/本级任务/返回值)
-
排序:归并分治/快速选择
-
DP:状态定义 → 转移方程 → 初始化 → 遍历顺序