目录
- 一、算法实现伪代码
- 1. 数据预处理与特征提取
- 2. 大模型训练与预测
- 3. 并发症风险预测
- 二、模块流程图
-
- 三、系统集成方案及流程
-
- 四、系统部署拓扑图
-
- 五、技术方案总结
一、算法实现伪代码
1. 数据预处理与特征提取
def preprocess_data(imaging_data, clinical_data): imaging_normalized = normalize_images(imaging_data) clinical_normalized = normalize_clinical_data(clinical_data) combined_features = fuse_features(imaging_normalized, clinical_normalized) return combined_features
2. 大模型训练与预测
def train_model(training_data): model = DeepLearningModel(input_shape=(feature_dim,)) model.compile(optimizer="Adam", loss="binary_crossentropy", metrics=["accuracy"]) model.fit(training_data, labels, epochs=50, batch_size=32, validation_split=0.2) save_model(model, "thyroid_nodule_predictor.h5")
def predict_nodule(input_data): model = load_model("thyroid_nodule_predictor.h5") prediction = model.predict(input_data) return prediction
3. 并发症风险预测
def predict_complications(surgical_data): complication_model = load_model("complication_predictor.h5") risk_score = complication_model.predict(surgical_data) return risk_score
二、模块流程图
1. 术前预测系统流程