当前位置: 首页 > news >正文

Clickhouse官方文档学习笔记

文章目录

  • What is ClickHouse?
    • Data Replication and Integrity
    • Approximate calculation
    • Superior query performance
  • Quick Start

What is ClickHouse?

ClickHouse® is a high-performance, column-oriented SQL database management system (DBMS) for online analytical processing (OLAP)
关键词: high-performance, column-based, OLAP

Data Replication and Integrity

ClickHouse uses an asynchronous multi-master replication scheme to ensure that data is stored redundantly on multiple nodes. After being written to any available replica, all the remaining replicas retrieve their copy in the background. The system maintains identical data on different replicas. Recovery after most failures is performed automatically, or semi-automatically in complex cases.
依然是sharding+replica的思路, 跟绝大多数cluster一样

Approximate calculation

ClickHouse provides ways to trade accuracy for performance. For example, some of its aggregate functions calculate the distinct value count, the median, and quantiles approximately. Also, queries can be run on a sample of the data to compute an approximate result quickly. Finally, aggregations can be run with a limited number of keys instead of for all keys. Depending on how skewed the distribution of the keys is, this can provide a reasonably accurate result that uses far fewer resources than an exact calculation.
近似/采样计算确实是个新鲜玩意

Superior query performance

ClickHouse is well known for having extremely fast query performance. To learn why ClickHouse is so fast, see the Why is ClickHouse fast? guide.
最大的卖点来了, 就是快。

Quick Start

略过

唯一值得注意的可能就是尽量使用呢bulk insert。数据可以先写到本地postgres或者s3然后一次性导入。

Done on 2025-06-22


http://www.dtcms.com/a/256645.html

相关文章:

  • git 如何忽略某个文件夹文件
  • vue3 el-table 行字体颜色 根据字段改变
  • 【云原生】Docker 部署 Elasticsearch 9 操作详解
  • ssh连接出现WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!
  • C预处理详解1
  • 多设备Obsidian笔记同步:WebDAV与内网穿透技术高效实现教程
  • HUELOJ: 107 打印数字图形(函数专题)
  • Python 的内置函数 help
  • 用 Python 绘制动态方块热力图:从数据到可视化的完美蜕变
  • 时序数据库IoTDB的架构、安装启动方法与数据模式总结
  • C# Quartz.net 定时任务
  • 中国风办公简约通用总结答辩PPT模版分享
  • 成都信工大ACM同步赛(第一次用JS打)
  • PyQt5—交互状态
  • 基于python代码的通过爬虫方式实现TK下载视频(2025年6月)
  • 从C++编程入手设计模式——命令模式
  • LeapMotion-PhysicalHandsManager 类详解
  • 关于控制结构知识点的详细讲解(从属GESP一级内容)
  • 在 Windows 和 Linux 下使用 C/C++ 连接 MySQL 的详细指南
  • 通义大模型与现有企业系统集成实战《CRM案例分析与安全最佳实践》
  • 《jQuery CSS 类的使用与优化》
  • CSS平滑滚动效果实现方法
  • uni-app项目实战笔记23--解决首次加载额外图片带来的网络消耗问题
  • Spark教程6:Spark 底层执行原理详解
  • 合成生物学与人工智能的融合:从生命编程到智能设计的IT新前沿
  • 前端手写题(一)
  • 计算机网络通信技术与协议(九)————交换机技术
  • 量化面试绿皮书:33. 不公平的硬币
  • 拯救海量数据:PostgreSQL分区表性能优化实战手册(附压测对比)
  • 发送与接收