当前位置: 首页 > news >正文

【AI Study】第四天,Pandas(6)- 性能优化

文章概要

本文详细介绍 Pandas 的性能优化技术,包括:

  • 内存优化
  • 计算优化
  • 大数据处理
  • 实际应用示例

内存优化

数据类型优化

# 查看数据类型
df.dtypes# 查看内存使用情况
df.memory_usage(deep=True)# 优化数值类型
# 将 float64 转换为 float32
df['float_column'] = df['float_column'].astype('float32')# 将 int64 转换为 int32 或 int16
df['int_column'] = df['int_column'].astype('int32')# 优化分类数据
df['category_column'] = df['category_column'].astype('category')# 优化日期时间
df['datetime_column'] = pd.to_datetime(df['datetime_column'])

内存使用分析

# 查看每列的内存使用
def memory_usage_by_column(df):return df.memory_usage(deep=True).sort_values(ascending=False)# 查看数据类型分布
def dtype_distribution(df):return df.dtypes.value_counts()# 查看空值比例
def null_ratio(df):return df.isnull().sum() / len(df)# 内存使用分析报告
def memory_analysis_report(df):print("内存使用情况:")print(memory_usage_by_column(df))print("\n数据类型分布:")print(dtype_distribution(df))print("\n空值比例:")print(null_ratio(df))

内存清理

# 删除不需要的列
df = df.drop(['unused_column1', 'unused_column2'], axis=1)# 删除重复行
df = df.drop_duplicates()# 重置索引
df = df.reset_index(drop=True)# 清理内存
import gc
gc.collect()# 使用 inplace 操作
df.dropna(inplace=True)
df.fillna(0, inplace=True)

计算优化

向量化操作

# 避免循环,使用向量化操作
# 不推荐
for i in range(len(df)):df.loc[i, 'new_column'] = df.loc[i, 'column1'] + df.loc[i, 'column2']# 推荐
df['new_column'] = df['column1'] + df['column2']# 使用 apply 而不是循环
# 不推荐
for i in range(len(df)):df.loc[i, 'new_column'] = some_function(df.loc[i, 'column'])# 推荐
df['new_column'] = df['column'].apply(some_function)# 使用向量化函数
df['new_column'] = np.where(df['column'] > 0, 'positive', 'negative')

并行计算

# 使用 multiprocessing 进行并行计算
from multiprocessing import Pooldef process_chunk(chunk):# 处理数据块的函数return chunk.apply(some_function)def parallel_apply(df, func, n_cores=4):# 将数据分成多个块chunks = np.array_split(df, n_cores)# 创建进程池pool = Pool(n_cores)# 并行处理results = pool.map(process_chunk, chunks)# 合并结果return pd.concat(results)# 使用示例
result = parallel_apply(df, some_function)

分块处理

# 分块读取大文件
chunk_size = 10000
chunks = pd.read_csv('large_file.csv', chunksize=chunk_size)# 分块处理
results = []
for chunk in chunks:# 处理每个数据块processed_chunk = process_chunk(chunk)results.append(processed_chunk)# 合并结果
final_result = pd.concat(results)# 使用迭代器处理大文件
def process_large_file(file_path, chunk_size=10000):for chunk in pd.read_csv(file_path, chunksize=chunk_size):# 处理每个数据块yield process_chunk(chunk)

大数据处理

分块读取

# 分块读取 CSV 文件
def read_csv_in_chunks(file_path, chunk_size=10000):return pd.read_csv(file_path, chunksize=chunk_size)# 分块读取 Excel 文件
def read_excel_in_chunks(file_path, sheet_name=0, chunk_size=10000):return pd.read_excel(file_path, sheet_name=sheet_name, chunksize=chunk_size)# 分块读取 SQL 查询结果
def read_sql_in_chunks(query, connection, chunk_size=10000):return pd.read_sql(query, connection, chunksize=chunk_size)

增量处理

# 增量处理数据
def incremental_processing(df, window_size=1000):results = []for i in range(0, len(df), window_size):chunk = df.iloc[i:i+window_size]# 处理数据块processed_chunk = process_chunk(chunk)results.append(processed_chunk)return pd.concat(results)# 增量更新
def incremental_update(df, new_data, key_column):# 合并新数据df = pd.concat([df, new_data])# 删除重复项df = df.drop_duplicates(subset=[key_column], keep='last')return df

分布式处理

# 使用 Dask 进行分布式处理
import dask.dataframe as dd# 创建 Dask DataFrame
ddf = dd.from_pandas(df, npartitions=4)# 分布式计算
result = ddf.groupby('column').mean().compute()# 使用 PySpark 进行分布式处理
from pyspark.sql import SparkSession# 创建 SparkSession
spark = SparkSession.builder.getOrCreate()# 将 Pandas DataFrame 转换为 Spark DataFrame
spark_df = spark.createDataFrame(df)# 分布式计算
result = spark_df.groupBy('column').mean()

实际应用示例

示例1:大数据集处理优化

# 创建示例数据
import numpy as np
import pandas as pd# 生成大数据集
n_rows = 1000000
df = pd.DataFrame({'id': range(n_rows),'value1': np.random.randn(n_rows),'value2': np.random.randn(n_rows),'category': np.random.choice(['A', 'B', 'C', 'D'], n_rows)
})# 优化数据类型
df['id'] = df['id'].astype('int32')
df['value1'] = df['value1'].astype('float32')
df['value2'] = df['value2'].astype('float32')
df['category'] = df['category'].astype('category')# 分块处理
def process_chunk(chunk):# 计算统计量stats = chunk.groupby('category').agg({'value1': ['mean', 'std'],'value2': ['mean', 'std']})return stats# 使用分块处理
chunk_size = 100000
chunks = [df[i:i+chunk_size] for i in range(0, len(df), chunk_size)]
results = [process_chunk(chunk) for chunk in chunks]
final_result = pd.concat(results)

示例2:内存优化实践

# 创建示例数据
df = pd.DataFrame({'id': range(1000000),'float_col': np.random.randn(1000000),'int_col': np.random.randint(0, 100, 1000000),'category_col': np.random.choice(['A', 'B', 'C', 'D'], 1000000),'date_col': pd.date_range('2023-01-01', periods=1000000)
})# 内存使用分析
print("优化前内存使用:")
print(df.memory_usage(deep=True).sum() / 1024**2, "MB")# 优化数据类型
df['id'] = df['id'].astype('int32')
df['float_col'] = df['float_col'].astype('float32')
df['int_col'] = df['int_col'].astype('int16')
df['category_col'] = df['category_col'].astype('category')# 优化后的内存使用
print("优化后内存使用:")
print(df.memory_usage(deep=True).sum() / 1024**2, "MB")

总结

性能优化部分涵盖了:

  1. 内存优化(数据类型优化、内存使用分析、内存清理)
  2. 计算优化(向量化操作、并行计算、分块处理)
  3. 大数据处理(分块读取、增量处理、分布式处理)
  4. 实际应用示例

掌握性能优化技术对于处理大规模数据至关重要,它可以帮助我们:

  • 减少内存使用
  • 提高计算效率
  • 处理大规模数据
  • 优化代码性能

建议在实际项目中注意:

  • 选择合适的数据类型
  • 使用向量化操作
  • 合理使用分块处理
  • 考虑使用分布式计算
  • 定期进行性能分析
  • 及时清理内存
  • 优化代码结构

相关文章:

  • 系统思考与核心竞争力
  • 【AI论文】ReasonMed:一个370K的多智能体生成数据集,用于推进医疗推理
  • OpenStack 入门体验
  • wireshark过滤器的使用
  • 21.加密系统函数
  • 海豚人工智能与大数据实验室的指导和系统内的指导文件是不一样的​
  • Pandas 中的 Period 对象
  • Android 中 解析 JSON 字符串的几种方式
  • man 的用法
  • 数据卷能管理两边,使其数据一致?——补充
  • 5G光网络新突破:<Light: Science Applications>报道可适应环境扰动的DRC实时校准技术
  • FPGA基础 -- Verilog行为建模之循环语句
  • WordPress用 Options Framework 创建一个自定义相册功能
  • linux内核调试
  • 【JUC】显示锁
  • 【计算机常识】--docker入门+docker desktop的使用(一)
  • 【JAVA】的SPI机制
  • 对象模型与LLM融合:人形机器人的智能革命与产业化路径
  • 基于Cookie和Session的模拟登录爬取实战:突破登录认证的高级技术
  • eps转pdf-2025年6月18日星期三
  • 需要企业网站建设/360优化大师历史版本
  • 资讯门户网站 dede/cps推广平台有哪些
  • 深圳个人做网站/怎么做网址
  • 大连网站建设/佛山网站建设公司哪家好
  • 新建网站/百度官网首页登陆
  • 兰州网站建设索王道下拉/seo教程最新