当前位置: 首页 > news >正文

疫菌QBD案例

本文是《A-VAX: Applying Quality by Design to Vaccines》第七个研究的R语言解决方案。

使用带两个中心点的二水平析因设计。运行10次实验。结果是分辨度为III的设计。

A <- c(25,25,15,15,15,25,25,20,15,20)

B <- c(12,8,8,12,8,12,8,10,12,10)

C <- c(35,15,15,15,35,15,35,25,35,25)

D <- c(250,250,250,150,150,150,150,200,250,200)

E <- c(20,20,10,20,20,10,10,15,10,15)

F <- c(24,12,24,12,24,24,12,18,12,18)

A <- c(1,1,-1,-1,-1,1,1,0,-1,0)

B <- c(1,-1,-1,1,-1,1,-1,0,1,0)

C <- c(1,-1,-1,-1,1,-1,1,0,1,0)

D <- c(1,1,1,-1,-1,-1,-1,0,1,0)

E <- c(1,1,-1,1,1,-1,-1,0,-1,0)

F <- c(1,-1,1,-1,1,1,-1,0,-1,0)

y1<-c(11.58,12.78,7.58,7.13,8.31,10.19,13.33,9.4,7.35,11.24)

y2<-c(0.59,0.49,0.24,0.28,0.26,0.25,0.58,0.49,0.22,0.40)

y3<-c(54.36,31.31,27.57,48.32,26.85,59.2,32.84,41.21,46.24,37.73)

y4<-c(53,45,44,35,57,35,53,47,58,56)

study6<- data.frame (A=A,B=B,C=C,D=D,E=E,F=F)

#aliases( lm( y1~ (.)^4, data = study6))

mod1 <- lm( y1 ~ (.), data = study6)

summary(mod1)

> summary(mod1)

Call:

lm.default(formula = y1 ~ (.), data = study6)

Residuals:

      1       2       3       4       5       6       7       8       9      10

 0.0160 -0.2315  0.0160  0.0160 -0.2315 -0.2315  0.0160 -0.4890 -0.2315  1.3510

Coefficients:

            Estimate Std. Error t value Pr(>|t|)   

(Intercept)  9.88900    0.27566  35.873 4.76e-05 ***

A            2.18875    0.30820   7.102  0.00574 **

B           -0.71875    0.30820  -2.332  0.10195   

C            0.36125    0.30820   1.172  0.32576   

D            0.04125    0.30820   0.134  0.90200   

E            0.16875    0.30820   0.548  0.62212   

F           -0.36625    0.30820  -1.188  0.32020   

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.8717 on 3 degrees of freedom

Multiple R-squared:  0.9516,    Adjusted R-squared:  0.8548

F-statistic: 9.829 on 6 and 3 DF,  p-value: 0.04393

mod2 <- lm( y2 ~ (.), data = study6)

summary(mod2)

> summary(mod2)

Call:

lm.default(formula = y2 ~ (.), data = study6)

Residuals:

      1       2       3       4       5       6       7       8       9      10

 0.0425 -0.0750  0.0425  0.0425 -0.0750 -0.0750  0.0425  0.1100 -0.0750  0.0200

Coefficients:

            Estimate Std. Error t value Pr(>|t|)  

(Intercept)  0.38000    0.03752  10.129  0.00205 **

A            0.11375    0.04194   2.712  0.07305 .

B           -0.02875    0.04194  -0.685  0.54229  

C            0.04875    0.04194   1.162  0.32920  

D            0.02125    0.04194   0.507  0.64731  

E            0.04125    0.04194   0.983  0.39791  

F           -0.02875    0.04194  -0.685  0.54229  

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.1186 on 3 degrees of freedom

Multiple R-squared:  0.7837,    Adjusted R-squared:  0.3511

F-statistic: 1.811 on 6 and 3 DF,  p-value: 0.3347

mod3 <- lm( y3 ~ (.), data = study6)

summary(mod3)

> summary(mod3)

Call:

lm.default(formula = y3 ~ (.), data = study6)

Residuals:

      1       2       3       4       5       6       7       8       9      10

 0.2095  0.3370  0.2095  0.2095  0.3370  0.3370  0.2095  0.6470  0.3370 -2.8330

Coefficients:

            Estimate Std. Error t value Pr(>|t|)   

(Intercept)  40.5630     0.5500  73.754 5.49e-06 ***

A             3.5913     0.6149   5.840 0.010002 * 

B            11.1938     0.6149  18.204 0.000362 ***

C            -0.7637     0.6149  -1.242 0.302458   

D            -0.9662     0.6149  -1.571 0.214127   

E            -0.6262     0.6149  -1.018 0.383437   

F             1.1588     0.6149   1.884 0.156005   

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.739 on 3 degrees of freedom

Multiple R-squared:  0.992,     Adjusted R-squared:  0.9761

F-statistic: 62.35 on 6 and 3 DF,  p-value: 0.003075

mod4 <- lm( y4 ~ (.), data = study6)

summary(mod4)

> summary(mod4)

Call:

lm.default(formula = y4 ~ (.), data = study6)

Residuals:

    1     2     3     4     5     6     7     8     9    10

-2.05  0.45 -2.05 -2.05  0.45  0.45 -2.05 -1.30  0.45  7.70

Coefficients:

              Estimate Std. Error t value Pr(>|t|)   

(Intercept)  4.830e+01  1.619e+00  29.840 8.27e-05 ***

A           -1.000e+00  1.810e+00  -0.553   0.6191   

B           -2.250e+00  1.810e+00  -1.243   0.3021   

C            7.750e+00  1.810e+00   4.282   0.0234 * 

D            2.500e+00  1.810e+00   1.381   0.2610   

E            2.728e-15  1.810e+00   0.000   1.0000   

F           -2.500e-01  1.810e+00  -0.138   0.8989   

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 5.119 on 3 degrees of freedom

Multiple R-squared:  0.8806,    Adjusted R-squared:  0.6417

  1. statistic: 3.686 on 6 and 3 DF,  p-value: 0.1558

相关文章:

  • Spring-rabbit重试消费源码分析
  • 低温对MOSFET的影响
  • SpringBoot打包运行原理和加载机制原理
  • 篇章六 论坛系统——业务开发——实现业务功能
  • JUC核心解析系列(四)——同步工具类 (Synchronizers)深度解析
  • Pytorch 卷积神经网络参数说明一
  • OSGI 是什么,有哪些具体应用、java8、9、10、11比较
  • uni-app项目实战笔记11--定义scss颜色变量方便页面引用
  • HarmonyOS 组件复用 指南
  • [直播推流] 使用 librtmp 库推流
  • 开心灿烂go开发面试题
  • C++/OpenCV地砖识别系统结合 Libevent 实现网络化 AI 接入
  • 雪豹速清APP:高效清理,畅享流畅手机体验
  • 【C++进阶篇】哈希的应用(位图)
  • 代码随想录算法训练营day4
  • Verilog自适应位宽与指定位宽不同导致模块无法正常执行
  • CMake 构建系统概述
  • CAD中DWG到DXF文件解析(一)
  • Linux入门(十六)shellshell变量设置环境变量位置参数变量预定义变量
  • langchain_mcp_adapters - MultiServerMCPClient 获取工具
  • 如何建设网站 知乎/网上做推广怎么收费
  • 网站首页设计制作教程/网络seo优化
  • 怎样做网站表白墙/产品推广渠道
  • 网站开发可以自学吗/客源引流推广
  • 免费装修设计app/专业黑帽seo推广
  • 旧宫做网站的公司/排名检测