当前位置: 首页 > news >正文

PyG测试GCN无线通信网络拓扑推理方法时间复杂度

前置数据见我的另一篇博客:

PyG遍历生成20节点到500节点的大规模无线通信网络拓扑推理数据

时间复杂度测试注意事项:

1.测试时间复杂度前一定要训练模型,没训练的模型和训练好的模型测试结果肯定是不一样的。预测时长和模型参数是有关系的,因为,不同数值的参数对应的二进制位数长度不一样。

2.步进不要设置太密集。测试复杂度肯定要训练大规模图数据,一个1000节点的无线通信网络拓扑图数据.mat文件就307M:

 步进太密集一个是占用硬盘空间太大,另一个是没必要花那么长时间测试。步进为10下,20到1000个节点就有100个左右的点了,够拟合复杂度曲线了。

程序: 

#作者:zhouzhichao
#创建时间:25年6月9日
#内容:进行时间复杂度测试import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
import sys
import torch
import time
torch.set_printoptions(linewidth=200)
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from torch_geometric.nn import GCNConv
sys.path.append('D:\无线通信网络认知\论文1\大修意见\Reviewer1-1 阈值相似性图对比实验')
from gcn_dataset import graph_data
print(torch.__version__)
print(torch.cuda.is_available())
from sklearn.metrics import roc_auc_score, precision_score, recall_score, accuracy_scoreclass Net(torch.nn.Module):def __init__(self):super().__init__()self.conv1 = GCNConv(Input_L, 100)self.conv2 = GCNConv(100, 50)def encode(self, x, edge_index):c1_in = x.Tc1_out = self.conv1(c1_in, edge_index)c1_relu = c1_out.relu()c2_out = self.conv2(c1_relu, edge_index)c2_relu = c2_out.relu()return c2_reludef decode(self, z, edge_label_index):# 节点和边都是矩阵,不同的计算方法致使:节点->节点,节点->边distance_squared = torch.sum((z[edge_label_index[0]] - z[edge_label_index[1]]) ** 2, dim=-1)return distance_squareddef decode_all(self, z):prob_adj = z @ z.t()  # 得到所有边概率矩阵return (prob_adj > 0).nonzero(as_tuple=False).t()  # 返回概率大于0的边,以edge_index的形式@torch.no_grad()def get_val(self, gcn_data):#获取未参与训练的节点索引edge_index = gcn_data.edge_index  # [2, 30]edge_label_index = gcn_data.edge_label_index  # [2, 60]edge_label = gcn_data.edge_label# 转置方便处理,变成 (num_edges, 2)edge_index_t = edge_index.t()  # [30, 2]edge_label_index_t = edge_label_index.t()  # [60, 2]# 把边转成集合形式的字符串,方便查找(也可用tuple)edge_index_set = set([tuple(e.tolist()) for e in edge_index_t])# 判断edge_label_index中的每个边是否在edge_index_set里is_in_edge_index = [tuple(e.tolist()) in edge_index_set for e in edge_label_index_t]is_in_edge_index = torch.tensor(is_in_edge_index)# 不相同的列(边)val_col = edge_label_index[:, ~is_in_edge_index]val_label = edge_label[~is_in_edge_index]val_col = val_col[:,:100]val_label = val_label[:100]divide_index = 50val_col_1 = val_col[:,:divide_index]val_label_1 = val_label[:divide_index]val_col_0 = val_col[:, divide_index:]val_label_0 = val_label[divide_index:]return  val_col_1, val_label_1, val_col_0, val_label_0@torch.no_grad()def test_val(self, gcn_data, threshhold):model.eval()# same_col, diff_col, same_label, diff_label = col_devide(gcn_data)val_col_1, val_label_1, val_col_0, val_label_0 = self.get_val(gcn_data)# 1z = model.encode(gcn_data.x, gcn_data.edge_index)out = model.decode(z, val_col_1).view(-1)out = 1 - outout_np = out.cpu().numpy()labels_1 = val_label_1.cpu().numpy()# roc_auc_s = roc_auc_score(labels_np, out_np)pred_1 = (out_np > threshhold).astype(int)accuracy_1 = accuracy_score(labels_1, pred_1)precision_1 = precision_score(labels_1, pred_1, zero_division=1)recall_1 = recall_score(labels_1, pred_1, zero_division=1)# 0z = model.encode(gcn_data.x, gcn_data.edge_index)out = model.decode(z, val_col_0).view(-1)out = 1 - outout_np = out.cpu().numpy()labels_0 = val_label_0.cpu().numpy()# roc_auc_d = roc_auc_score(labels_np, out_np)pred_0 = (out_np > threshhold).astype(int)accuracy_0 = accuracy_score(labels_0, pred_0)precision_0 = precision_score(labels_0, pred_0, zero_division=1)recall_0 = recall_score(labels_0, pred_0, zero_division=1)accuracy = (accuracy_1 + accuracy_0)/2precision = (precision_1 + precision_0)/2recall = (recall_1 + recall_0)/2return accuracy, precision, recall@torch.no_grad()def predict(self, gcn_data, threshhold):model.eval()z = model.encode(gcn_data.x, gcn_data.edge_index)out = model.decode(z, gcn_data.complex_test).view(-1)out = 1 - outout_np = out.cpu().numpy()pred = (out_np > threshhold).astype(int)return pred@torch.no_grad()def calculate_threshhold(self, gcn_data):model.eval()z = model.encode(gcn_data.x, gcn_data.edge_index)out = model.decode(z, gcn_data.edge_label_index).view(-1)out = 1 - outout_np = out.cpu().numpy()labels_np = gcn_data.edge_label.cpu().numpy()threshhold = 0accuracy_max = 0for th in np.arange(-2, 1.1, 0.1):pred_labels = (out_np > th).astype(int)accuracy = accuracy_score(labels_np, pred_labels)if accuracy>accuracy_max:accuracy_max = accuracythreshhold = threturn threshholddef graph_normalize(gcn_data):for i in range(gcn_data.x.shape[1]):gcn_data.x[:, i] = gcn_data.x[:,i]/torch.max(torch.abs(gcn_data.x[:,i]))cost_time = []
N_list = []
# for N in range(20,510,10):
for N in range(510, 1010, 10):N_list.append(N)root = "D:\无线通信网络认知\论文1\大修意见\Reviewer1-4 大规模图实验\\20-500节点网络(PyG)\\"+str(N)+"_nodes_data"gcn_data = graph_data(root)graph_normalize(gcn_data)Input_L = gcn_data.x.shape[0]model = Net()optimizer = torch.optim.Adam(params=model.parameters(), lr=0.01)criterion = torch.nn.BCEWithLogitsLoss()model.train()def train():optimizer.zero_grad()z = model.encode(gcn_data.x, gcn_data.edge_index)out = model.decode(z, gcn_data.edge_label_index).view(-1)out = 1 - outloss = criterion(out, gcn_data.edge_label)loss.backward()optimizer.step()return lossmin_loss = 99999count = 0#早停for epoch in range(100000):loss = train()if loss<min_loss:min_loss = losscount = 0print("N:  ", N, "  epoch:  ", epoch, "   loss: ",round(loss.item(), 4), "   min_loss: ", round(min_loss.item(), 4))count = count + 1if count>100:breakt1 = time.time()for p in range(100):threshhold = model.calculate_threshhold(gcn_data)pred = model.predict(gcn_data,threshhold)t2 = time.time()delta_t = (t2 - t1)/100cost_time.append(delta_t)data = {'N_list': N_list,'cost_time': cost_time
}# 创建一个 DataFrame
df = pd.DataFrame(data)
#
# # 保存到 Excel 文件
# file_path = 'D:\无线通信网络认知\论文1\大修意见\Reviewer1-4 大规模图实验\\20-500 nodes time cost.xlsx'
file_path = 'D:\无线通信网络认知\论文1\大修意见\Reviewer1-4 大规模图实验\\510-1000 nodes time cost.xlsx'
df.to_excel(file_path, index=False)

复杂度测试结果:

相关文章:

  • Windows11+VS2019配置Libigl-2.4.1
  • Green Gold Label 绿金标认证
  • el-switch文字内置
  • 【Linux指南】用户与系统基础操作
  • 华为OD机试-最短木板长度-二分法(A卷,100分)
  • 【时时三省】(C语言基础)变量的存储方式和生存期
  • 医美宏脉软件如何通过快解析实现远程访问?
  • 【java】【服务器】线程上下文丢失 是指什么
  • 【51单片机】4. 模块化编程与LCD1602Debug
  • 2025最全TS手写题之partial/Omit/Pick/Exclude/Readonly/Required
  • STM32使用水位传感器
  • 牛客round95D
  • 科伦药业:以“三发引擎”驱动创新,全面迈入价值收获新周期
  • TCA 循环中间体如何改写肝损伤命运【AbMole】
  • VAS1086Q 奇力科技线性芯片车规用品LED驱动芯片
  • 无人机EN 18031欧盟网络安全认证详细解读
  • ABAP设计模式之---“童子军法则(The Boy Scout Rule)”
  • 最短路径算法总结
  • 卡尔曼滤波器:从概念到应用
  • ICDAR数据集简介
  • 开鲁网站seo不用下载/网站建设规划要点详解
  • 美女做基网站/襄阳网站seo
  • 做网站用需要几个软件/制作网站软件
  • 如何做漂亮的网站/关键词优化工具
  • v9双语版网站怎么做/安卓优化大师下载安装
  • 做百度ssp的网站开发人/昆明新闻头条最新消息