cnn训练并用grad-cam可视化
使用大米图片训练集,包含五个文件,分别是5种品牌的大米,使用cnn进行分类训练。
- -Arborio/ :代表 Arborio 品种的大米图像数据,根据 Rice_Citation_Request.txt 文件可知,该数据集中包含 Arborio 品种的大米图像。
- Basmati/ :代表 Basmati 品种的大米图像数据,同样是数据集中 Basmati 品种大米的图像集合。
- Ipsala/ :代表 Ipsala 品种的大米图像数据,该文件夹下存储了大量 Ipsala 品种大米的图像文件。
- Jasmine/ :代表 Jasmine 品种的大米图像数据,是 Jasmine 品种大米的图像数据集。
- Karacadag/ :代表 Karacadag 品种的大米图像数据,包含该品种大米的相关图像。
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import torch.nn.functional as F
from torchvision.models import resnet18
import cv2
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt# 数据预处理
transform = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])# 加载数据集
data_dir = 'e:/2025_python/Rice_Image_Dataset'
train_dataset = datasets.ImageFolder(root=data_dir, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)# 定义 CNN 模型
class SimpleCNN(nn.Module):def __init__(self):super(SimpleCNN, self).__init__()self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1)self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1)self.pool = nn.MaxPool2d(2, 2)self.fc1 = nn.Linear(32 * 56 * 56, 128)self.fc2 = nn.Linear(128, len(train_dataset.classes))def forward(self, x):x = self.pool(F.relu(self.conv1(x)))x = self.pool(F.relu(self.conv2(x)))x = x.view(-1, 32 * 56 * 56)x = F.relu(self.fc1(x))x = self.fc2(x)return x# 初始化模型、损失函数和优化器
model = SimpleCNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# 训练模型
num_epochs = 10
for epoch in range(num_epochs):running_loss = 0.0for i, (images, labels) in enumerate(train_loader):optimizer.zero_grad()outputs = model(images)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()print(f'Epoch {epoch + 1}, Loss: {running_loss / len(train_loader)}')# Grad - CAM 实现
def grad_cam(model, img, target_layer):model.eval()img = img.unsqueeze(0)img.requires_grad_()feature_maps = []gradients = []def forward_hook(module, input, output):feature_maps.append(output)def backward_hook(module, grad_input, grad_output):gradients.append(grad_output[0])hook = target_layer.register_forward_hook(forward_hook)hook_backward = target_layer.register_backward_hook(backward_hook)output = model(img)pred = torch.argmax(output, dim=1)output[0, pred].backward()hook.remove()hook_backward.remove()feature_map = feature_maps[0][0]gradient = gradients[0][0]weights = torch.mean(gradient, dim=(1, 2))cam = torch.zeros(feature_map.shape[1:], dtype=torch.float32)for i, w in enumerate(weights):cam += w * feature_map[i, :, :]cam = torch.relu(cam)cam = cam.detach().numpy()cam = cv2.resize(cam, (img.shape[3], img.shape[2]))cam = (cam - np.min(cam)) / (np.max(cam) - np.min(cam))return cam# 选择一张图片进行 Grad - CAM 可视化
sample_img, _ = train_dataset[0]
cam = grad_cam(model, sample_img, model.conv2)# 可视化结果
img_np = sample_img.permute(1, 2, 0).numpy()
img_np = (img_np - np.min(img_np)) / (np.max(img_np) - np.min(img_np))
cam = np.uint8(255 * cam)
heatmap = cv2.applyColorMap(cam, cv2.COLORMAP_JET)
superimposed_img = cv2.addWeighted(np.uint8(255 * img_np), 0.6, heatmap, 0.4, 0)plt.imshow(cv2.cvtColor(superimposed_img, cv2.COLOR_BGR2RGB))
plt.axis('off')
plt.show()
@浙大疏锦行