当前位置: 首页 > news >正文

用deepseek学大模型03-数学基础 概率论 条件概率 全概率公式 贝叶斯定理

要深入浅出地理解条件概率与贝叶斯定理,可以从以下几个方面入手,结合理论知识和实例进行学习:
贝叶斯定理与智能世界的暗语
条件概率,全概率公式与贝叶斯公式的推导,理解和应用
拉普拉斯平滑

贝叶斯解决垃圾邮件分类
贝噎死
被噎死
https://metaso.cn/s/hUUemWR:我正在学习深度学习相关的数学知识,学到了概率论与统计学部分,给我一个入门级的完整教程和实例,让我深入浅出的理解条件概率与贝叶斯定理

一、基础知识

1. 条件概率

条件概率是指在已知某个事件发生的情况下,另一个事件发生的概率。用数学公式表示为:
P ( A ∣ B ) = P ( A ∩ B ) P ( B ) P(A|B) = \frac{P(A \cap B)}{P(B)} P(AB)=P(B)P(AB)

其中:
- P ( A ∣ B ) P(A|B) P(AB)是在事件 B B B发生的条件下,事件 A A A发生的概率。
- P ( A ∩ B ) P(A \cap B) P(AB)是事件 A A A和事件 B B B同时发生的联合概率。
- P ( B ) P(B) P(B)是事件 B B B发生的概率。

条件概率的核心思想是通过已知信息更新对事件发生可能性的判断。例如,如果一个袋子里有3个红球和2个蓝球,从中随机取出一个球,放回后再次取出一个球,求第二次取出红球的概率。这个问题可以通过条件概率来解决。

2. 全概率公式

全概率公式用于将复杂的事件分解为多个简单事件的概率之和。公式如下:
P ( A ) = ∑ i = 1 n P ( A ∣ B i ) P ( B i ) P(A) = \sum_{i=1}^{n} P(A|B_i)P(B_i) P(A)=i=1nP(ABi)P(Bi)

其中:
- P ( A ) P(A) P(A)是事件 A A A发生的总概率。
- P ( A ∣ B i ) P(A|B_i) P(ABi)是在事件 B i B_i Bi发生的条件下,事件 A A A发生的概率。
- P ( B i ) P(B_i) P(Bi)是事件 B i B_i Bi发生的概率。

全概率公式在实际问题中非常有用,比如在医学诊断中,根据患者的症状和不同疾病的概率来计算患病的可能性。

3. 贝叶斯定理

贝叶斯定理是条件概率的一种推广,用于计算后验概率。公式如下:
P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) P(A|B) = \frac{P(B|A)P(A)}{P(B)} P(AB)=P(B)P(BA)P(A)

其中:
- P ( A ∣ B ) P(A|B) P(AB)是后验概率,即在事件 B B B发生的条件下,事件 A A A发生的概率。
- P ( B ∣ A ) P(B|A) P(BA)是似然概率,即在事件 A A A发生的条件下,事件 B B B发生的概率。
- P ( A ) P(A) P(A)是先验概率,即事件 A A A发生的初始概率。
- P ( B ) P(B) P(B)是边缘概率,即事件 B B B发生的总概率。

贝叶斯定理的核心在于利用已知信息(先验概率)和新证据(似然概率)来更新对事件发生可能性的判断。例如,在文本分类中,根据已知的词频分布和文档类别,可以预测某段文本属于某一类别的概率。

二、实例分析

1. 条件概率实例

假设一个袋子里有3个红球和2个蓝球,从中随机取出一个球,放回后再次取出一个球。求第二次取出红球的概率。

解:

  • 第一次取出红球的概率为 P ( 红 ) = 3 5 P(\text{红}) = \frac{3}{5} P()=53,取出蓝球的概率为 P ( 蓝 ) = 2 5 P(\text{蓝}) = \frac{2}{5} P()=52
  • 在第一次取出红球的条件下,第二次取出红球的概率为 P ( 红 ∣ 红 ) = 3 5 P(\text{红}|\text{红}) = \frac{3}{5} P()=53,因为放回后袋子里仍然是3个红球和2个蓝球。
  • 在第一次取出蓝球的条件下,第二次取出红球的概率为 P ( 红 ∣ 蓝 ) = 3 5 P(\text{红}|\text{蓝}) = \frac{3}{5} P()=53,因为放回后袋子里仍然是3个红球和2个蓝球。

根据全概率公式:
P ( 第二次红 ) = P ( 红 ∣ 红 ) P ( 红 ) + P ( 红 ∣ 蓝 ) P ( 蓝 ) = 3 5 × 3 5 + 3 5 × 2 5 = 9 25 + 6 25 = 15 25 = 0.6 P(\text{第二次红}) = P(\text{红}|\text{红})P(\text{红}) + P(\text{红}|\text{蓝})P(\text{蓝}) = \frac{3}{5} \times \frac{3}{5} + \frac{3}{5} \times \frac{2}{5} = \frac{9}{25} + \frac{6}{25} = \frac{15}{25} = 0.6 P(第二次红)=P()P()+P()P()=53×53+53×52=259+256=2515=0.6

2. 贝叶斯定理实例

假设某病的患病率为1%,即 P ( 病 ) = 0.01 P(\text{病}) = 0.01 P()=0.01,某检测方法的准确率为90%,即 P ( 阳性 ∣ 病 ) = 0.9 P(\text{阳性}|\text{病}) = 0.9 P(阳性)=0.9,假阳性率为5%,即 P ( 阳性 ∣ 无病 ) = 0.05 P(\text{阳性}|\text{无病}) = 0.05 P(阳性无病)=0.05。求某人检测结果为阳性时,实际患病的概率。

解:

  • 先验概率: P ( 病 ) = 0.01 P(\text{病}) = 0.01 P()=0.01
  • 似然概率: P ( 阳性 ∣ 病 ) = 0.9 P(\text{阳性}|\text{病}) = 0.9 P(阳性)=0.9
  • 边缘概率: P ( 阳性 ) = P ( 阳性 ∣ 病 ) P ( 病 ) + P ( 阳性 ∣ 无病 ) P ( 无病 ) = 0.9 × 0.01 + 0.05 × 0.99 = 0.009 + 0.0495 = 0.0585 P(\text{阳性}) = P(\text{阳性}|\text{病})P(\text{病}) + P(\text{阳性}|\text{无病})P(\text{无病}) = 0.9 \times 0.01 + 0.05 \times 0.99 = 0.009 + 0.0495 = 0.0585 P(阳性)=P(阳性)P()+P(阳性无病)P(无病)=0.9×0.01+0.05×0.99=0.009+0.0495=0.0585

根据贝叶斯定理:
P ( 病 ∣ 阳性 ) = P ( 阳性 ∣ 病 ) P ( 病 ) P ( 阳性 ) = 0.9 × 0.01 0.0585 = 0.1538 P(\text{病}|\text{阳性}) = \frac{P(\text{阳性}|\text{病})P(\text{病})}{P(\text{阳性})} = \frac{0.9 \times 0.01}{0.0585} = 0.1538 P(阳性)=P(阳性)P(阳性)P()=0.05850.9×0.01=0.1538

因此,在检测结果为阳性的条件下,实际患病的概率约为15.38%。

三、总结与应用

通过以上实例可以看出,条件概率和贝叶斯定理在实际问题中具有广泛的应用价值。例如:

  1. 医学诊断:根据患者的症状和检测结果,计算患病的可能性。
  2. 自然语言处理:根据文本特征和语料库,预测文本的主题或情感。
  3. 机器学习:朴素贝叶斯分类器利用贝叶斯定理进行分类预测。

学习这些概念时,建议结合具体问题进行练习,并逐步深入理解其背后的数学原理和应用场景。希望这个入门级教程能帮助你更好地掌握条件概率与贝叶斯定理!

相关文章:

  • 周雨彤:用角色与生活,诠释审美的艺术
  • 1、cadence从零开始让一个VCO起振——基本设置
  • MATLAB算法实战应用案例精讲-【数模应用】空间插值(附MATLAB、R语言和python代码实现)
  • JavaScript设计模式 -- 迭代器模式
  • 【信息学奥赛一本通 C++题解】1285:最大上升子序列和
  • 同花顺数据爬取并生成K线
  • 【SpringBoot苍穹外卖】debugDay0 打开前端页面
  • sed命令详细教程
  • 力扣-二叉树-513 找二叉树左下角的值
  • FFmpeg 全面知识大纲梳理
  • 【LLM】浙大: 大模型基础 第一版 第一章:语言模型基础
  • CMake configure_file
  • Mycat中间件
  • 实现能源高效利用、优化能源结构、降低碳排放的智慧能源开源了
  • COBOL语言的移动应用开发
  • 第1章大型互联网公司的基础架构——1.3 HTTP-DNS
  • ### net7 + 出现了 自带的 限流中间件 固定窗口、滑动窗口 并发 令牌桶 全局限流器
  • deepseek本地部署方案(超简单)
  • 网页制作02-html,css,javascript初认识のhtml的文字与段落标记
  • Audio-Visual Speech Enhancement(视听语音增强)领域近三年研究进展与国内团队及手机厂商动态分析
  • 国家能源局通报上月投诉情况:赤峰有群众反映电费异常增高,已退费
  • 青海西宁市城西区副区长于媛媛主动投案,接受审查调查
  • 工业富联一季度净利增长25%,云计算业务营收增长超50%
  • 俄罗斯纪念卫国战争胜利80周年阅兵式首次彩排在莫斯科举行
  • 三大白电巨头去年净利近900亿元:美的持续领跑,格力营收下滑
  • 绿地控股:今年一季度营业收入356亿元,中高层管理人员带头降薪