[yolov11改进系列]基于yolov11引入全维度动态卷积ODConv的python源码+训练源码
[ODConv介绍]
在现代卷积神经网络(CNN)中,每个卷积层中学习单个静态卷积核是常见的训练范式。然而,最近在动态卷积的研究中表明,通过学习 n 个卷积核的线性组合,并且这些卷积核的权重取决于它们的输入相关注意力,可以显著提高轻量级 CNN 的准确性,同时保持高效的推理。但是,我们观察到,现有的工作通过一个维度(关于卷积核数量)赋予卷积核动态属性,但另外三个维度(关于每个卷积核的空间大小、输入通道数和输出通道数)被忽略了。受此启发,我们提出了全方位动态卷积(ODConv),这是一种更通用且优雅的动态卷积设计,以推进这一研究方向。ODConv 利用一种新颖的多维注意力机制和并行策略,在任何卷积层的卷积核空间的所有四个维度上学习卷积核的互补注意力。作为常规卷积的替代品,ODConv 可以插入许多 CNN 架构中。在 ImageNet 和 MS-COCO 数据集上的广泛实验表明,ODConv 为各种主流的 CNN 骨干网络带来了稳固的准确性提升,包括轻量级和大型网络,例如,在 ImageNet 数据集上为 MobileNetV2|ResNet 系列带来了 3.77%∼5.71%|1.86%∼3.72% 的绝对 top-1 改进。有趣的是,由于其改进的特征学习能力,即使只有一个卷积核的 ODConv 也可以与现有的多核动态卷积对应物相竞争或胜过它们,大大减少了额外的参数。此外,ODConv 也优于其他注意力模块,用于调节输出特征或卷积权重。
创新点
ODConv是一种更通用但更优雅的动态卷积设计,它利用一种新颖的多维注意力机制和并行策略来学习卷积核的补充注意力,这些注意力涉及卷积核空间在任何卷积层的所有四个维度(即每个卷积核的空间大小、输入通道数、输出通道数和卷积核数量)。作为常规卷积的直接替代品,ODConv可以嵌入到多种CNN架构中。在ImageNet基准上进行了基础实验,在MS-COCO基准上进行了下游实验。
(a) DyConv(CondConv使用GAP+FC+Sigmoid)与(b) ODConv的示意性比较。与CondConv和DyConv不同,后者为卷积核 $W_{i}$计算单一的注意力标量 $α_{wi}$,ODConv利用一种新颖的多维注意力机制,以并行方式计算 ( W_i ) 在卷积核空间的所有四个维度上的四种类型的注意力 $α_{si}$, $α_{ci}$, $α_{fi}$和 $α_{wi}$。
ODConv中逐步将四种类型的注意力乘以卷积核的示意图。(a) 沿空间维度的位置逐个乘法操作,(b) 沿输入通道维度的通道逐个乘法操作,(c) 沿输出通道维度的滤波器逐个乘法操作,以及 (d) 沿卷积核空间的核维度的核逐个乘法操作。
【yolov11框架介绍】
2024 年 9 月 30 日,Ultralytics 在其活动 YOLOVision 中正式发布了 YOLOv11。YOLOv11 是 YOLO 的最新版本,由美国和西班牙的 Ultralytics 团队开发。YOLO 是一种用于基于图像的人工智能的计算机模
Ultralytics YOLO11 概述
YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。
Key Features 主要特点
- 增强的特征提取:YOLO11采用改进的主干和颈部架构,增强了特征提取能力,以实现更精确的目标检测和复杂任务性能。
- 针对效率和速度进行优化:YOLO11 引入了精致的架构设计和优化的训练管道,提供更快的处理速度并保持准确性和性能之间的最佳平衡。
- 使用更少的参数获得更高的精度:随着模型设计的进步,YOLO11m 在 COCO 数据集上实现了更高的平均精度(mAP),同时使用的参数比 YOLOv8m 少 22%,从而在不影响精度的情况下提高计算效率。
- 跨环境适应性:YOLO11可以无缝部署在各种环境中,包括边缘设备、云平台以及支持NVIDIA GPU的系统,确保最大的灵活性。
- 支持的任务范围广泛:无论是对象检测、实例分割、图像分类、姿态估计还是定向对象检测 (OBB),YOLO11 旨在应对各种计算机视觉挑战。
与之前的版本相比,Ultralytics YOLO11 有哪些关键改进?
Ultralytics YOLO11 与其前身相比引入了多项重大进步。主要改进包括:
- 增强的特征提取:YOLO11采用改进的主干和颈部架构,增强了特征提取能力,以实现更精确的目标检测。
- 优化的效率和速度:精细的架构设计和优化的训练管道可提供更快的处理速度,同时保持准确性和性能之间的平衡。
- 使用更少的参数获得更高的精度:YOLO11m 在 COCO 数据集上实现了更高的平均精度(mAP),参数比 YOLOv8m 少 22%,从而在不影响精度的情况下提高计算效率。
- 跨环境适应性:YOLO11可以跨各种环境部署,包括边缘设备、云平台和支持NVIDIA GPU的系统。
- 支持的任务范围广泛:YOLO11 支持多种计算机视觉任务,例如对象检测、实例分割、图像分类、姿态估计和定向对象检测 (OBB)
【测试环境】
windows10 x64
ultralytics==8.3.0
torch==2.3.1
【改进流程】
1. 新增ODConv.py实现模块(代码太多,核心模块源码请参考改进步骤.docx)然后在同级目录下面创建一个__init___.py文件写代码
from .ODConv import *
2. 文件修改步骤
修改tasks.py文件
创建模型配置文件
yolo11-ODConv.yaml内容如下:
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# YOLO11n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, ODConv2d, [128, 3, 2]] # 1-P2/4- [-1, 2, C3k2, [256, False, 0.25]]- [-1, 1, ODConv2d, [256, 3, 2]] # 3-P3/8- [-1, 2, C3k2, [512, False, 0.25]]- [-1, 1, ODConv2d, [512, 3, 2]] # 5-P4/16- [-1, 2, C3k2, [512, True]]- [-1, 1, ODConv2d, [1024, 3, 2]] # 7-P5/32- [-1, 2, C3k2, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 2, C2PSA, [1024]] # 10# YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)- [-1, 1, ODConv2d, [256, 3, 2]]- [[-1, 13], 1, Concat, [1]] # cat head P4- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)- [-1, 1, ODConv2d, [512, 3, 2]]- [[-1, 10], 1, Concat, [1]] # cat head P5- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)- [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)
3. 验证集成
使用新建的yaml配置文件启动训练任务:
from ultralytics import YOLOif __name__ == '__main__':model = YOLO('yolo11-ODConv.yaml') # build from YAML and transfer weights# Train the modelresults = model.train(data='coco128.yaml',epochs=100, imgsz=640, batch=8, device=0, workers=1, save=True,resume=False)
成功集成后,训练日志中将显示ODConv模块的初始化信息,表明已正确加载到模型中。
【训练说明】
第一步:首先安装好yolov11必要模块,可以参考yolov11框架安装流程,然后卸载官方版本pip uninstall ultralytics,最后安装改进的源码pip install .
第二步:将自己数据集按照dataset文件夹摆放,要求文件夹名字都不要改变
第三步:分别打开train.py,coco128.yaml和模型参数yaml文件修改必要的参数,最后执行python train.py即可训练
【提供文件】
├── [官方源码]ultralytics-8.3.0.zip
├── train/
│ ├── coco128.yaml
│ ├── dataset/
│ │ ├── train/
│ │ │ ├── images/
│ │ │ │ ├── firc_pic_1.jpg
│ │ │ │ ├── firc_pic_10.jpg
│ │ │ │ ├── firc_pic_11.jpg
│ │ │ │ ├── firc_pic_12.jpg
│ │ │ │ ├── firc_pic_13.jpg
│ │ │ ├── labels/
│ │ │ │ ├── classes.txt
│ │ │ │ ├── firc_pic_1.txt
│ │ │ │ ├── firc_pic_10.txt
│ │ │ │ ├── firc_pic_11.txt
│ │ │ │ ├── firc_pic_12.txt
│ │ │ │ ├── firc_pic_13.txt
│ │ └── val/
│ │ ├── images/
│ │ │ ├── firc_pic_100.jpg
│ │ │ ├── firc_pic_81.jpg
│ │ │ ├── firc_pic_82.jpg
│ │ │ ├── firc_pic_83.jpg
│ │ │ ├── firc_pic_84.jpg
│ │ ├── labels/
│ │ │ ├── firc_pic_100.txt
│ │ │ ├── firc_pic_81.txt
│ │ │ ├── firc_pic_82.txt
│ │ │ ├── firc_pic_83.txt
│ │ │ ├── firc_pic_84.txt
│ ├── train.py
│ ├── yolo11-ODConv.yaml
│ └── 训练说明.txt
├── [改进源码]ultralytics-8.3.0.zip
├── 改进原理.docx
└── 改进流程.docx
【常见问题汇总】
问:为什么我训练的模型epoch显示的map都是0或者map精度很低?
回答:由于源码改进过,因此不能直接从官方模型微调,而是从头训练,这样学习特征能力会很弱,需要训练很多epoch才能出现效果。此外由于改进的源码框架并不一定能够保证会超过官方精度,而且也有可能会存在远远不如官方效果,甚至精度会很低。这说明改进的框架并不能取得很好效果。所以说对于框架改进只是提供一种可行方案,至于改进后能不能取得很好map还需要结合实际训练情况确认,当然也不排除数据集存在问题,比如数据集比较单一,样本分布不均衡,泛化场景少,标注框不太贴合标注质量差,检测目标很小等等原因
【重要说明】
我们只提供改进框架一种方案,并不保证能够取得很好训练精度,甚至超过官方模型精度。因为改进框架,实际是一种比较复杂流程,包括框架原理可行性,训练数据集是否合适,训练需要反正验证以及同类框架训练结果参数比较,这个是十分复杂且漫长的过程。