当前位置: 首页 > news >正文

5.23 打卡

DAY 34 GPU训练及类的call方法

知识点回归:

  1. CPU性能的查看:看架构代际、核心数、线程数
  2. GPU性能的查看:看显存、看级别、看架构代际
  3. GPU训练的方法:数据和模型移动到GPU device上
  4. 类的call方法:为什么定义前向传播时可以直接写作self.fc1(x)

作业

复习今天的内容,在巩固下代码。思考下为什么会出现这个问题。

import torch
import torch.nn as nn
import torch.optim as optim
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import numpy as np# 仍然用4特征,3分类的鸢尾花数据集作为我们今天的数据集
# 加载鸢尾花数据集
iris = load_iris()
X = iris.data  # 特征数据
y = iris.target  # 标签数据
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# # 打印下尺寸
# print(X_train.shape)
# print(y_train.shape)
# print(X_test.shape)
# print(y_test.shape)# 归一化数据,神经网络对于输入数据的尺寸敏感,归一化是最常见的处理方式
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test) #确保训练集和测试集是相同的缩放# 将数据转换为 PyTorch 张量,因为 PyTorch 使用张量进行训练
# y_train和y_test是整数,所以需要转化为long类型,如果是float32,会输出1.0 0.0
X_train = torch.FloatTensor(X_train)
y_train = torch.LongTensor(y_train)
X_test = torch.FloatTensor(X_test)
y_test = torch.LongTensor(y_test)class MLP(nn.Module): # 定义一个多层感知机(MLP)模型,继承父类nn.Moduledef __init__(self): # 初始化函数super(MLP, self).__init__() # 调用父类的初始化函数# 前三行是八股文,后面的是自定义的self.fc1 = nn.Linear(4, 10)  # 输入层到隐藏层self.relu = nn.ReLU()self.fc2 = nn.Linear(10, 3)  # 隐藏层到输出层
# 输出层不需要激活函数,因为后面会用到交叉熵函数cross_entropy,交叉熵函数内部有softmax函数,会把输出转化为概率def forward(self, x):out = self.fc1(x)out = self.relu(out)out = self.fc2(out)return out# 实例化模型
model = MLP()# 分类问题使用交叉熵损失函数
criterion = nn.CrossEntropyLoss()# 使用随机梯度下降优化器
optimizer = optim.SGD(model.parameters(), lr=0.01)# # 使用自适应学习率的化器
# optimizer = optim.Adam(model.parameters(), lr=0.001)# 训练模型
num_epochs = 20000 # 训练的轮数# 用于存储每个 epoch 的损失值
losses = []import time
start_time = time.time() # 记录开始时间for epoch in range(num_epochs): # range是从0开始,所以epoch是从0开始# 前向传播outputs = model.forward(X_train)   # 显式调用forward函数# outputs = model(X_train)  # 常见写法隐式调用forward函数,其实是用了model类的__call__方法loss = criterion(outputs, y_train) # output是模型预测值,y_train是真实标签# 反向传播和优化optimizer.zero_grad() #梯度清零,因为PyTorch会累积梯度,所以每次迭代需要清零,梯度累计是那种小的bitchsize模拟大的bitchsizeloss.backward() # 反向传播计算梯度optimizer.step() # 更新参数# 记录损失值losses.append(loss.item())# 打印训练信息if (epoch + 1) % 100 == 0: # range是从0开始,所以epoch+1是从当前epoch开始,每100个epoch打印一次print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')time_all = time.time() - start_time # 计算训练时间
print(f'Training time: {time_all:.2f} seconds')
import matplotlib.pyplot as plt
# 可视化损失曲线
plt.plot(range(num_epochs), losses)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss over Epochs')
plt.show()

import wmic = wmi.WMI()
processors = c.Win32_Processor()for processor in processors:print(f"CPU 型号: {processor.Name}")print(f"核心数: {processor.NumberOfCores}")print(f"线程数: {processor.NumberOfLogicalProcessors}")

import torch# 检查CUDA是否可用
if torch.cuda.is_available():print("CUDA可用!")# 获取可用的CUDA设备数量device_count = torch.cuda.device_count()print(f"可用的CUDA设备数量: {device_count}")# 获取当前使用的CUDA设备索引current_device = torch.cuda.current_device()print(f"当前使用的CUDA设备索引: {current_device}")# 获取当前CUDA设备的名称device_name = torch.cuda.get_device_name(current_device)print(f"当前CUDA设备的名称: {device_name}")# 获取CUDA版本cuda_version = torch.version.cudaprint(f"CUDA版本: {cuda_version}")# 查看cuDNN版本(如果可用)print("cuDNN版本:", torch.backends.cudnn.version())else:print("CUDA不可用。")

# 加载鸢尾花数据集
iris = load_iris()
X = iris.data  # 特征数据
y = iris.target  # 标签数据# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 归一化数据
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)# 将数据转换为PyTorch张量并移至GPU
# 分类问题交叉熵损失要求标签为long类型
# 张量具有to(device)方法,可以将张量移动到指定的设备上
X_train = torch.FloatTensor(X_train).to(device)
y_train = torch.LongTensor(y_train).to(device)
X_test = torch.FloatTensor(X_test).to(device)
y_test = torch.LongTensor(y_test).to(device)class MLP(nn.Module):def __init__(self):super(MLP, self).__init__()self.fc1 = nn.Linear(4, 10)self.relu = nn.ReLU()self.fc2 = nn.Linear(10, 3)def forward(self, x):out = self.fc1(x)out = self.relu(out)out = self.fc2(out)return out# 实例化模型并移至GPU
# MLP继承nn.Module类,所以也具有to(device)方法
model = MLP().to(device)# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)# 训练模型
num_epochs = 20000
losses = []start_time = time.time()for epoch in range(num_epochs):# 前向传播outputs = model(X_train)loss = criterion(outputs, y_train)# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()# 记录损失值losses.append(loss.item())# 打印训练信息if (epoch + 1) % 100 == 0:print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')time_all = time.time() - start_time
print(f'Training time: {time_all:.2f} seconds')# 可视化损失曲线
plt.plot(range(num_epochs), losses)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss over Epochs')
plt.show()

剩余时长 ≈ 固定的系统初始化/运行开销 + 每次同步造成的相对固定开销 * (记录次数 / 某些非线性因子)

其中,“固定的系统初始化/运行开销”是最大的组成部分,它不随记录次数变化。而 loss.item() 导致的同步开销,虽然每次都会发生,但其对总时长的影响并不是严格线性的,因为它涉及到 GPU 管道的刷新和 CPU 的等待,而不是每次同步都额外增加了等比例的计算量。GPU 自身在这些同步点之间可能依然高效地工作,从而使得总的“额外”等待时间相对稳定。

相关文章:

  • 淘宝卖家评价等级如何区分?如何提升信誉等级?
  • centos原系统安装了Python3.7.9兼用在安装一个python3.8
  • 【JS】vue3具名导出与默认导出
  • 人工智能在优化算法与大规模求解器中的应用与发展
  • 【论文阅读】Stop Overthinking:高效大模型推理技术综述
  • 详解Mysql的 Binlog、UndoLog 和 RedoLog
  • 交换机的连接方式堆叠和级联
  • Python 脚本执行命令的深度探索:方法、示例与最佳实践
  • day34 python深度学习训练优化实践:CPU vs GPU
  • 南门岗,15号楼俩电梯一片监控掉线,
  • python学习打卡day34
  • 纺线机与PLC通讯故障?ETHERCAT/CANopen网关秒解协议难题
  • 高项公式英文解析记忆
  • Open CASCADE学习|非线性方程组求解技术详解
  • 【Linux cmd】查找进程信息
  • 无人机开启未来配送新篇章
  • 解构赋值与剩余参数:语法特性背后的思考
  • 制作一款打飞机游戏55:扩散
  • SAP在金属行业的数字化转型:无锡哲讯科技的智能解决方案
  • 二维空间几何图形​​处理库.GEOS几何库.
  • 北京牌楼设计制作/百度seo快排软件
  • 建设工程网站贴吧/网站怎么制作免费的
  • 宝安区网络公司/seo外包费用
  • 网站建设第一品牌 网站设计/东莞做网站推广的公司
  • 青海西宁高端网站建设/项目外包平台
  • 网站建设前置审批/百度seo规则