2024CCPC辽宁省赛 个人补题 ABCEGJL
Dashboard - 2024 CCPC Liaoning Provincial Contest - Codeforces
过题难度
B A J C L E G
铜奖 4 953
银奖 6 991
金奖 8 1664
B:
模拟题
// Code Start Here string s;cin >> s;reverse(all(s));cout << s << endl;
A:很明显的哈希一下,然后去重即可,这里set和map都可以
// Code Start Here string s;getline(cin , s);for(int i = 0;i<sz(s);i++){if((s[i] >= 'A' && s[i] <= 'Z')){s[i] += 32;}}set<string> st;for(int i = 0;i<sz(s);i++){if((s[i] >= 'a' && s[i] <= 'z') || (s[i] >= 'A' && s[i] <= 'Z')){int j = i;string t = "";while((s[j] >= 'a' && s[j] <= 'z') || (s[j] >= 'A' && s[j] <= 'Z')) t += s[j++];i = j;st.insert(t);}}int q;cin >> q;while(q--){string t;cin >> t;if(st.find(t) != st.end())st.erase(t);}
// for(auto i : st)cout << i <<" ";cout << sz(st) << endl;
J
模拟前后两次的人数
// Code Start Here int n;cin >> n;int a , b , c;cin >> a >> b >> c;vector<int> x(n + 1) , y (n + 1);for(int i = 1;i<=n;i++)cin >> x[i] >> y[i];int d;cin >> d;int before = 0 , after = 0;for(int i = 1;i<=n;i++){if(x[i] + y[i] >= c){before++;}}for(int i = 1;i<=n;i++) x[i] = min(a , x[i] + d);for(int i = 1;i<=n;i++){if(x[i] + y[i] >= c){after++;}}cout <<after - before << endl;
C
DFS跑一遍每个插座和插排的功率,然后贪心跑一遍判断即可
// Code Start Here int n;cin >> n;vector<int> w(n + 1);vector<vector<int>> g(n + 1);vector<int> f(n + 1);for(int i = 1;i<=n;i++){int u;cin >> u >> w[i];g[u].push_back(i);}w[0] = 2200;auto dfs = [&](auto &&self , int u)->void{if(g[u].empty())f[u] += w[u];for(auto v : g[u]){self(self,v);f[u] += f[v];}};dfs(dfs , 0);vector<int> e , ee;for(int i = 0;i<=n;i++){if(!g[i].empty()){e.push_back(f[i]);ee.push_back(w[i]);}}sort(all(e)) , sort(all(ee));bool flag = true;for(int i = 0;i<sz(e);i++){if(e[i] > ee[i] || e[i] > w[0])flag = false;}cout << ( flag ? "YES" : "NO") <<endl;
L
题意:
2024年起,每平年 +1 层数。但有特殊规则,年份必须是 4 的倍数,且不能是 100 的倍数但不是 10000 的倍数,否则是平年。到第 k 层的时候,是哪一年
思路:
可以不断贪心,更简单的方法是二分年份,然后找第k个合法年份。
计算到年份 x 之间,有多少个平年。遍历 i = 4, 400, 40000, ... 逐个计算:x / i 表示小于等于 x 有多少个 i 的倍数(4, 400, 40000, ...)x / (25 * i) 表示去掉那些是100倍数但不是10000倍数的年数。x - sum 表示有效的龙之研习年份数量,看看是不是到达了第 n + 1533 个。这里的 1533 是因为:2024是第0层,到2024年底总共经历了 2024 - 1533 = 491 个有效年份(实际上这1533是题目设定的初始偏移值,具体是为了校正年份起点和层数的关系)
// Code Start Here int t;cin >> t;while(t--){int n;cin >> n;int l = 2025 , r = 2e18;auto check = [&](int x)->bool{int sum = 0;for(int i = 4;i<=x;i*= 100){sum += x / i - x / (25 * i);}return (x - sum) >= (n + 1533);};while(l <= r){int mid = l + r >> 1;if(check(mid)) r = mid - 1;else l = mid + 1;}cout << l << endl;}
E
一道大模拟
// Code Start Here int t;cin >> t;auto solve = [&]()->void{int x, y; cin >> x >> y;if(x*y %4 !=0){cout << "NO\n";return ;}vector a(x+1, vector<int>(y+1, 0));auto yes = [&](){cout << "YES\n";for(int i=1; i<=x; ++i){for(int j=1; j<=y; ++j) cout << a[i][j] << " ";cout << endl;}};if(x % 4 == 0){int cnt = 1;for(int j=1; j<=y; j++){for(int i=1; i<=x; i+=4){a[i][j] = a[i+1][j] = a[i+2][j] = a[i+3][j] = cnt++;}}yes();return;}if(y % 4 ==0){int cnt=1;for(int i=1; i<=x; i++){for(int j=1; j<=y; j+=4){a[i][j] = a[i][j+1] = a[i][j+2] = a[i][j+3] = cnt++;}}yes();return;}if(x%2 ==0 && y%2 ==0){if(y >=6 && (y-6)%4 ==0){for(int i=1; i<=x; i+=2){int temp = (i/2)*((y-6)/4*2 +3) +1;a[i][1] = a[i][2] = a[i][3] = a[i+1][1] = temp;a[i][4] = a[i][5] = a[i][6] = a[i+1][6] = temp+1;a[i+1][2] = a[i+1][3] = a[i+1][4] = a[i+1][5] = temp+2;int cnt = temp+3;for(int j=7; j<=y; j+=4){a[i][j] = a[i][j+1] = a[i][j+2] = a[i][j+3] = cnt++;a[i+1][j] = a[i+1][j+1] = a[i+1][j+2] = a[i+1][j+3] = cnt++;}}yes();return;}else if(x >=6 && (x-6)%4 ==0){for(int j=1; j<=y; j+=2){int temp = (j/2)*((x-6)/4*2 +3) +1;a[1][j] = a[2][j] = a[3][j] = a[1][j+1] = temp;a[4][j] = a[5][j] = a[6][j] = a[6][j+1] = temp+1;a[2][j+1] = a[3][j+1] = a[4][j+1] = a[5][j+1] = temp+2;int cnt = temp+3;for(int i=7; i<=x; i+=4){a[i][j] = a[i+1][j] = a[i+2][j] = a[i+3][j] = cnt++;a[i][j+1] = a[i+1][j+1] = a[i+2][j+1] = a[i+3][j+1] = cnt++;}}yes();return;}}cout << "NO\n";};while(t--){solve();}
G
题意:给定一个长度为n的数组,求存在多少个子数组满足最大 值出现至少k 次。
思路:对于每一个位置i,我们可以考虑其作为第一个最大值时对答案的贡献,即能保证不重不漏的计数。不妨设:Li 为以 i 为起点,从右往左第一个比ai 大的元素的位置;Ri 为以 i 为起点,从左往右第一个比ai 大的元素的位置;lsti 为相对于当前位置 i,ai 上一次出现的位置;nxti 为相对于当前位置 i,ai 第 k 次出现的位置。
其中,Li 和Ri 可以通过单调栈计算,lsti 和nxti 则可以通过对值域开桶,根据每个位置在对应的桶中的相对位置进行计算。对于当前位置i 作为第一个最大值的数组:其左端点的合法范围是(max(lsti,Li),i],其右端点的合法范围是[i,min(nxti,Ri))。最后,统计每个位置作为第一个最大值时的贡献,即能求出结果
// Code Start Here int t;cin >> t;while(t--){int n , k;cin >> n >> k;vector<int> a(n + 1) , l (n + 1) , r(n + 1);vector<vector<int>> num(n + 1);for(int i = 1;i<=n;i++){cin >> a[i];num[a[i]].push_back(i);}int ans = 0;vector<int> left , right;for(int i = 1;i<=n;i++){while(!left.empty() && a[left.back()] <=a[i])left.pop_back();if(left.empty())l[i] = 1;else l[i] = left.back() + 1;left.push_back(i);}for(int i = n;i>=1;i--){while(!right.empty() && a[right.back()] <= a[i])right.pop_back();if(right.empty())r[i] = n;else r[i] = right.back() - 1;right.push_back(i);}for(int i = n;i>=1;i--){if(sz(num[i]) >= k){for(int j = 0;j + k - 1 < sz(num[i]);j++){int p = num[i][j] , q = num[i][j + k - 1];int l_ = l[p] , r_ = r[p];if(j >= 1) l_ = max(l_ , num[i][j - 1] + 1);if(r_ >= q)ans += (p - l_ + 1) *(r_ - q + 1);}} }cout << ans << endl;}