【PhysUnits】4.4 零类型(Z0)及其算术运算(zero.rs)
一、源码
该代码定义了一个类型系统中的零类型Z0,并为其实现了基本的算术运算(加法、减法、乘法、除法)。这是一个典型的类型级编程示例,使用Rust的类型系统在编译期进行数学运算。
//! 零类型(Z0)及其算术运算实现
//!
//! 本模块定义了类型系统中的零类型,并为其实现了基本算术运算。
//! 所有运算遵循数学规则,特别是零元素的算术特性。use core::ops::{Add, Sub, Mul, Div};
use core::marker::PhantomData;
use crate::sealed::Sealed;
use super::{Positive, Neg, Integer, Null};/// 零类型实现Sealed标记trait
impl Sealed for Z0 {}/// 类型系统中的零类型表示
///
/// # 示例
/// ```
/// use type_arithmetic::Z0;
///
/// let zero = Z0;
/// ```
#[derive(Eq, PartialEq, Clone, Copy, Debug, Default)]
pub struct Z0;// ========== 加法运算实现 ==========/// 零加零等于零
impl Add<Z0> for Z0 {type Output = Z0;#[inline]fn add(self, _rhs: Z0) -> Self::Output {Z0}
}/// 零加正数等于该正数
impl<P: Positive> Add<P> for Z0 {type Output = P;#[inline]fn add(self, rhs: P) -> Self::Output {rhs}
}/// 正数加零等于该正数
impl<P: Positive> Add<Z0> for P {type Output = P;#[inline]fn add(self, _rhs: Z0) -> Self::Output {self}
}/// 负数加零等于该负数
impl<P: Positive> Add<Z0> for Neg<P> {type Output = Neg<P>;#[inline]fn add(self, _rhs: Z0) -> Self::Output {self}
}// ========== 减法运算实现 ==========/// 零减零等于零
impl Sub for Z0 {type Output = Z0;#[inline]fn sub(self, _rhs: Self) -> Self::Output {Z0}
}/// 零减正数等于对应负数
impl<P: Positive> Sub<P> for Z0 {type Output = Neg<P>;#[inline]fn sub(self, _rhs: P) -> Self::Output {Neg::<P>::default()}
}/// 零减负数等于对应正数
impl<P: Positive> Sub<Neg<P>> for Z0 {type Output = P;#[inline]fn sub(self, _rhs: Neg<P>) -> Self::Output {P::default()}
}/// 正数减零等于该正数
impl<P: Positive> Sub<Z0> for P {type Output = P;#[inline]fn sub(self, _rhs: Z0) -> Self::Output {self}
}/// 负数减零等于该负数
impl<P: Positive> Sub<Z0> for Neg<P> {type Output = Neg<P>;#[inline]fn sub(self, _rhs: Z0) -> Self::Output {self}
}// ========== 乘法运算实现 ==========/// 零乘零等于零
impl Mul for Z0 {type Output = Z0;#[inline]fn mul(self, _rhs: Self) -> Self::Output {Z0}
}/// 零乘正数等于零
impl<P: Positive> Mul<P> for Z0 {type Output = Z0;#[inline]fn mul(self, _rhs: P) -> Self::Output {Z0}
}/// 零乘负数等于零
impl<P: Positive> Mul<Neg<P>> for Z0 {type Output = Z0;#[inline]fn mul(self, _rhs: Neg<P>) -> Self::Output {Z0}
}/// 正数乘零等于零
impl<P: Positive> Mul<Z0> for P {type Output = Z0;#[inline]fn mul(self, _rhs: Z0) -> Self::Output {Z0}
}/// 负数乘零等于零
impl<P: Positive> Mul<Z0> for Neg<P> {type Output = Z0;#[inline]fn mul(self, _rhs: Z0) -> Self::Output {Z0}
}// ========== 除法运算实现 ==========/// 零除以正数等于零
impl<P: Positive> Div<P> for Z0 {type Output = Z0;#[inline]fn div(self, _rhs: P) -> Self::Output {Z0}
}/// 零除以负数等于零
impl<P: Positive> Div<Neg<P>> for Z0 {type Output = Z0;#[inline]fn div(self, _rhs: Neg<P>) -> Self::Output {Z0}
}// 注意:正数/零和负数/零未实现,因为数学上除以零未定义#[cfg(test)]
mod tests {use super::*;use crate::{P1, N1};#[test]fn test_z0_addition() {let zero = Z0;let p1 = P1::default();let n1 = N1::default();assert_eq!(zero + p1, p1);assert_eq!(zero + n1, n1);assert_eq!(p1 + zero, p1);assert_eq!(n1 + zero, n1);}#[test]fn test_z0_subtraction() {let zero = Z0;let p1 = P1::default();let n1 = N1::default();assert_eq!(zero - p1, N1::default());assert_eq!(zero - n1, P1::default());assert_eq!(p1 - zero, p1);assert_eq!(n1 - zero, n1);}#[test]fn test_z0_multiplication() {let zero = Z0;let p2 = P1::default();let n1 = N1::default();assert_eq!(zero * p1, zero);assert_eq!(zero * n1, zero);assert_eq!(p1 * zero, zero);assert_eq!(n1 * zero, zero);}#[test]fn test_z0_division() {let zero = Z0;let p1 = P1::default();let n1 = N1::default();assert_eq!(zero / p1, zero);assert_eq!(zero / n1, zero);}#[test]fn test_z0_interactions() {let zero = Z0;let p1 = P1::default();let n1 = N1::default();assert_eq!(zero + p1, P1::default());assert_eq!((zero - p1) + n1, zero);assert_eq!((p1 + zero) * n1, N1::default());}
}
二、核心概念
-
Z0类型:表示类型系统中的零值,是一个单元结构体(pub struct Z0;)
-
特性实现:
-
实现了Sealed标记trait(一种设计模式,防止外部实现)
-
实现了Add、Sub、Mul、Div等运算trait
三、运算实现细节
加法运算
-
Z0 + Z0 = Z0
-
Z0 + 正数 = 正数
-
正数 + Z0 = 正数
-
负数 + Z0 = 负数
减法运算
-
Z0 - Z0 = Z0
-
Z0 - 正数 = 对应负数
-
Z0 - 负数 = 对应正数
-
正数 - Z0 = 正数
-
负数 - Z0 = 负数
乘法运算
- Z0 * 任何数 = Z0(符合数学中零乘以任何数等于零的规则)
除法运算
-
Z0 / 正数 = Z0
-
Z0 / 负数 = Z0
-
没有实现任何数除以Z0(因为数学上不允许除以零)
四、测试用例
代码包含了详尽的测试用例,验证了:
-
零与正数(P1)、负数(N1)的加法
-
零与正负数之间的减法
-
零与正负数的乘法
-
零除以正负数的除法
-
各种运算的组合
五、设计特点
-
类型安全:所有运算在编译期进行类型检查
-
零特性:严格遵循数学中零元素的算术特性
-
扩展性:可以与系统中的其他数值类型(正数、负数)交互
-
零开销:使用Rust的零成本抽象,运行时没有额外开销
这种类型级编程技术常用于需要编译期计算和验证的场景,如维度检查、单位系统等。