C++_数据结构_哈希表(hash)实现
✨✨ 欢迎大家来到小伞的大讲堂✨✨
🎈🎈养成好习惯,先赞后看哦~🎈🎈
所属专栏:C++学习
小伞的主页:xiaosan_blog制作不易!点个赞吧!!谢谢喵!!!
1.哈希概念
1.1 直接链址法
387. 字符串中的第一个唯一字符 - 力扣(LeetCode)
这是一种空间换时间的一种方式,假如开辟无限大的空间,查找一个数为O(n),而插入则是O(1);
class Solution {
public:int firstUniqChar(string s) {int count[26] = {0};//哈希映射// 统计次数for (auto ch : s) {count[ch - 'a']++;}//第一次存入值for (size_t i = 0; i < s.size(); ++i) {if (count[s[i] - 'a'] == 1)return i;}//第二次查找return -1;}
};
1.2 哈希冲突
1.3 哈希因子
假设哈希表中已经映射存储了N个值,哈希表的大小为M,那么负载因⼦ = M/N,负载因⼦有些地方也翻译为载荷因⼦/装载因⼦等,他的英文为load factor。负载因⼦越大,哈希冲突的概率越高,空间利用率越高;负载因子越小,哈希冲突的概率越低,空间利用率越低;
1.4 哈希函数
1.4.1 除法散列法/除留余数法
1.4.2 乘法散列法
1.4.3 全域散列法
1.4.4 其他方法
1.平方取中法
假设关键码为1234,对它平方就是1522756,抽取中间的3位227作为哈希地址; 再比如关键码为4321,对它平方就是18671041,抽取中间的3位671(或710)作为哈希地址。
平方取中法比较适合:不知道关键码的分布,而位数又不是很大的情况
2.折叠法
关键码从左到右分割成位数相等的几部分(最后一部分位数可以短些),然后将这几部分叠加求和,并按散列表表长,取后几位作为散列地址。
折叠法适合事先不需要知道关键码的分布且位数比较多的情况
3.随机数法
选择一个随机函数,取关键字的随机函数值为它的哈希地址,即H(key) = random(key),其中 random为随机数函数。
通常应用于关键字长度不等时采用此法
4.数学分析法
设有n个d位数,每一位可能有r种不同的符号,这r种不同的符号在各位上出现的频率不一定相同,可能在某些位上分布比较均匀,每种符号出现的机会均等,在某些位上分布不均匀,只有某几种符号经常出现。此时可根据散列表的大小,选择其中各种符号分布均匀的若干位作为散列地址。
比如:假设要存储某家公司员工登记表,如果用手机号作为关键字,那么极有可能前7位都是 相同的,那么我们可以选择后面的4位作为散列地址,如果这样的抽取工作还容易出现冲突,还可以对抽取出来的数字进行反转(如1234改成4321)、右环移位(如1234改成4123)、左环移位、前两数与后两数叠加(如1234改成12+34=46)等方法。
数字分析法通常适合处理关键字位数比较大的情况,如果事先知道关键字的分布且关键字的 若干位分布较均匀的情况
1.5 处理哈希冲突
哈希表无论选择什么方法都会产生哈希冲突,那如何解决冲突呢?主要有两个方法,开放定址法和链地址法
1.5.1 开放定址法概念
1.线性探测
1.从发⽣冲突的位置开始,依次线性向后探测,直到寻找到下⼀个没有存储数据的位置为⽌,如果⾛到哈希表尾,则回绕到哈希表头的位置。2.h(key) = hash0 = key % M, hash0位置冲突了,则线性探测公式为:hc(key,i) = hashi = (hash0 + i) % M, i = {1, 2, 3, ..., M − 1}, 因为负载因⼦⼩于1, 则最多探测M-1次,⼀定能找到⼀个存储key的位置。3.线性探测的⽐较简单且容易实现,线性探测的问题假设,hash0位置连续冲突,hash0,hash1, hash2位置已经存储数据了,后续映射到hash0,hash1,hash2,hash3的值都会争夺hash3位置,这种现象叫做群集/堆积。下⾯的⼆次探测可以⼀定程度改善这个问题。
h(19) = 8,h(30) = 8,h(5) = 5,h(36) = 3,h(13) = 2,h(20) = 9,h(21) =10,h(12) = 1 |
2.二次探测
1.从发生冲突的位置开始,依次左右按二次方跳跃式探测,直到寻找到下一个没有存储数据的位置为止,如果往右走到哈希表尾,则回绕到哈希表头的位置;如果往左走到哈希表头,则回绕到哈希表尾的位置;
2.h(key) = hash0 = key % M,hash0位置冲突了,则二次探测公式为:
hc(key, i) = hashi = (hash0 ± i^2) % M, i = {1, 2, 3, ... ,M/2 }
3.二次探测当 hashi = (hash0 - i^2)%M 时,当hashi<0时,需要hashi += M
例:下面演示{19,30,52,63,11,22}等这一组值映射到M=11的表中。
h(19) = 8, h(30) = 8, h(52) = 8, h(63) = 8, h(11) = 0, h(22) = 0
3.双重散列
1.第一个哈希函数计算出的值发生冲突,使用第二个哈希函数计算出一个跟key相关的偏移量值,不断往后探测,直到寻找到下一个没有存储数据的位置为止。
2.h1(key) = hash0 = key % M, hash0位置冲突了,则双重探测公式为:
hc(key, i) = hashi = (hash0 + i ∗ h2(key)) % M, i = {1, 2, 3,... ,M/2 }
3.要求h2(key)<M且h2(key)和M互为质数,有两种简单的取值方法:1、当M为2整数幂时,h2(key)从[0,M-1]任选一个奇数;2、当M为质数时,h2(key)=key%(M-1)+1
4.保证h2(key)与M互质是因为根据固定的偏移量所寻址的所有位置将形成一个群,若最大公约数p=gcd(M,h(key))>1,那么所能寻址的位置的个数为M/FV,使得对于一个关键字来说无法充分利用整个散列表。举例来说,若初始探查位置为1,偏移量为3,整个散列表大小为12,那么所能寻址的位置为{1,4,7,10},寻址个数为12/gcd(12,3)=4
例:下面演示{19,30,52,74}等这一组值映射到M=11的表中,设h2(key)=key%10+1
1.5.1.1 开放定址法
开放定址法在实践中,不如下面讲的链地址法,因为开放定址法解决冲突不管使用哪种方法,占用的都是哈希表中的空间,始终存在互相影响的问题。所以开放定址法,我们简单选择线性探测实现即可。
开放定址法的哈希表结构
enum State {EXIST,EMPTY,DELETE }; template<class K, class V> struct HashData {pair<K, V> _kv;State _state = EMPTY; }; template<class K, class V> class HashTable {private :vector<HashData<K, V>> _tables;size_t _n = 0; // 表中存储数据个数 };
要注意的是这里需要给每个存储值的位置加一个状态标识,否则删除一些值以后,会影响后面冲突的值的查找。如下图,我们删除30,会导致查找20失败,当我们给每个位置加一个状态标识
{EXIST,EMPTY,DELETE},删除30就可以不用删除值,而是把状态改为DELETE,那么查找20
时是遇到EMPTY才能,就可以找到20。
h(19) = 8,h(30) = 8,h(5) = 5,h(36) = 3,h(13) = 2,h(20) = 9,h(21) =10,h(12) = 1 |
扩容
这里我们哈希表负载因子控制在0.7,当负载因子到0.7以后我们就需要扩容了,我们还是按照2倍扩容,但是同时我们要保持哈希表大小是一个质数,第一个是质数,2倍后就不是质数了。那么如何解决了,一种方案就是上面1.4.1除法散列中我们讲的JavaHashMap的使用2的整数幂,但是计算时不能直接取模的改进方法。另外一种方案是sgi版本的哈希表使用的方法,给了一个近似2倍的质数表,每次去质数表获取扩容后的大小。
inline unsigned long __stl_next_prime(unsigned long n){// Note: assumes long is at least 32 bits.//采用质数开辟空间,减小哈希冲突static const int __stl_num_primes = 28;static const unsigned long __stl_prime_list[__stl_num_primes] ={ 53, 97, 193, 389, 769,1543, 3079, 6151, 12289, 24593,49157, 98317, 196613, 393241, 786433,1572869, 3145739, 6291469, 12582917, 25165843,50331653, 100663319, 201326611, 402653189, 805306457,1610612741, 3221225473, 4294967291};const unsigned long* first = __stl_prime_list;const unsigned long* last = __stl_prime_list +__stl_num_primes;const unsigned long* pos = lower_bound(first, last, n);return pos == last ? *(last - 1) : *pos;//三目表达式}
key不能取模的问题
当key是string/Date等类型时,key不能取模,那么我们需要给HashTable增加一个仿函数,这个仿函数支持把key转换成一个可以取模的整形,如果key可以转换为整形并且不容易冲突,那么这个仿函数就用默认参数即可,如果这个Key不能转换为整形,我们就需要自已实现一个仿函数传给这个参数,实现这个仿函数的要求就是尽量key的每值都参与到计算中,让不同的key转换出的整形值不同。string做哈希表的key非常常见,所以我们可以考虑把string特化一下。
struct HashFunc
{size_t operator()(const K& key){return (size_t)key;}
};
//特化
template<>
struct HashFunc<string>
{// 字符串转换成整形,可以把字符ascii码相加即可// 但是直接相加的话,类似"abcd"和"bcad"这样的字符串计算出是相同的// 这⾥我们使⽤BKDR哈希的思路,⽤上次的计算结果去乘以⼀个质数,这个质数⼀般去31, 131等效果会⽐较好size_t operator()(const string& key){size_t hash = 0;for (auto e : key){hash *= 131;hash += e;}return hash;}
};template<class K, class V, class Hash = HashFunc<K>>
class HashTable
{
public:
private:vector<HashData<K, V>> _tables;size_t _n = 0; // 表中存储数据个数
}
完整代码
#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>
#include<vector>
using namespace std;
template<class K>
struct HashFunc
{size_t operator()(const K& key){return (size_t)key;}
};
template<>
struct HashFunc<string>
{// 字符串转换成整形,可以把字符ascii码相加即可// 但是直接相加的话,类似"abcd"和"bcad"这样的字符串计算出是相同的// 这⾥我们使⽤BKDR哈希的思路,⽤上次的计算结果去乘以⼀个质数,这个质数⼀般去31, 131等效果会⽐较好size_t operator()(const string& key){size_t hash = 0;for (auto e : key){hash *= 131;hash += e;}return hash;}
};namespace open_address
{enum State{EXIST,EMPTY,DELETE};template<class K, class V>struct HashData{pair<K, V> _kv;State _state = EMPTY;};template<class K, class V, class Hash = HashFunc<K>>class HashTable{public :inline unsigned long __stl_next_prime(unsigned long n){// Note: assumes long is at least 32 bits.static const int __stl_num_primes = 28;static const unsigned long __stl_prime_list[__stl_num_primes] ={ 53, 97, 193, 389, 769,1543, 3079, 6151, 12289, 24593,49157, 98317, 196613, 393241, 786433,1572869, 3145739, 6291469, 12582917, 25165843,50331653, 100663319, 201326611, 402653189, 805306457,1610612741, 3221225473, 4294967291};const unsigned long* first = __stl_prime_list;const unsigned long* last = __stl_prime_list +__stl_num_primes;const unsigned long* pos = lower_bound(first, last, n);return pos == last ? *(last - 1) : *pos;} HashTable(){_tables.resize(__stl_next_prime(0));} bool Insert(const pair<K, V>& kv){if (Find(kv.first))return false;// 负载因⼦⼤于0.7就扩容if (_n * 10 / _tables.size() >= 7){// 这⾥利⽤类似深拷⻉现代写法的思想插⼊后交换解决HashTable<K, V, Hash> newHT;newHT._tables.resize(__stl_next_prime(_tables.size() + 1));for (size_t i = 0; i < _tables.size(); i++){if (_tables[i]._state == EXIST){newHT.Insert(_tables[i]._kv);}} _tables.swap(newHT._tables);} Hash hash;size_t hash0 = hash(kv.first) % _tables.size();size_t hashi = hash0;size_t i = 1;while (_tables[hashi]._state == EXIST){// 线性探测hashi = (hash0 + i) % _tables.size();// ⼆次探测就变成 +- i^2++i;} _tables[hashi]._kv = kv;_tables[hashi]._state = EXIST;++_n;return true;} HashData<K, V>* Find(const K& key){Hash hash;size_t hash0 = hash(key) % _tables.size();size_t hashi = hash0;size_t i = 1;while (_tables[hashi]._state != EMPTY){if (_tables[hashi]._state == EXIST&& _tables[hashi]._kv.first == key){return &_tables[hashi];} // 线性探测hashi = (hash0 + i) % _tables.size();++i;}return nullptr;} bool Erase(const K& key){HashData<K, V>* ret = Find(key);if (ret == nullptr){return false;} else{ret->_state = DELETE;--_n;return true;}}private:vector<HashData<K, V>> _tables;size_t _n = 0; // 表中存储数据个数};
}
开放定址法中所有的元素都放到哈希表里,链地址法中所有的数据不再直接存储在哈希表中,哈希表中存储一个指针,没有数据映射这个位置时,这个指针为空,有多个数据映射到这个位置时,我们把这些冲突的数据链接成一个链表,挂在哈希表这个位置下面,链地址法也叫做拉链法或者哈希桶。
1.5.2链地址法
下面演示{19,30,5,36,13,20,21,12,24,96}等这一组值映射到M=11的表中。
h(19) = 8,h(30) = 8,h(5) = 5,h(36) = 3,h(13) = 2,h(20) = 9 h(21) =10,h(12) = 1,h(24) = 2,h(96) = 88 |
扩容
开放定址法负载因子必须小于1,链地址法的负载因子就没有限制了,可以大于1。负载因子越大,哈希冲突的概率越高,空间利用率越高;负载因子越小,哈希冲突的概率越低,空间利用率越低;st中unordered_xxx的最大负载因子基本控制在1,大于1就扩容,我们下面实现也使用这个方式。
极端场景
如果极端场景下,某个桶特别长怎么办?其实我们可以考虑使用全域散列法,这样就不容易被针对
了。但是假设不是被针对了,用了全域散列法,但是偶然情况下,某个桶很长,查找效率很低怎么
办?这里在Java8的HashMap中当桶的长度超过一定阀值(8)时就把链表转换成红黑树。一般情况下,不断扩容,单个桶很长的场景还是比较少的。
代码实现
namespace hash_bucket
{template<class K, class V>struct HashNode{pair<K, V> _kv;HashNode<K, V>* _next;HashNode(const pair<K, V>& kv):_kv(kv), _next(nullptr){}};template<class K, class V, class Hash = HashFunc<K>>class HashTable{typedef HashNode<K, V> Node;inline unsigned long __stl_next_prime(unsigned long n){static const int __stl_num_primes = 28;static const unsigned long __stl_prime_list[__stl_num_primes] ={53, 97, 193, 389, 769,1543, 3079, 6151, 12289, 24593,49157, 98317, 196613, 393241, 786433,1572869, 3145739, 6291469, 12582917, 25165843,50331653, 100663319, 201326611, 402653189, 805306457,1610612741, 3221225473, 4294967291};const unsigned long* first = __stl_prime_list;const unsigned long* last = __stl_prime_list +__stl_num_primes;const unsigned long* pos = lower_bound(first, last, n);return pos == last ? *(last - 1) : *pos;}public:HashTable(){_tables.resize(__stl_next_prime(0), nullptr);} // 拷⻉构造和赋值拷⻉需要实现深拷⻉,有兴趣的同学可以⾃⾏实现~HashTable(){// 依次把每个桶释放for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;delete cur;cur = next;} _tables[i] = nullptr;}} bool Insert(const pair<K, V>& kv){Hash hs;size_t hashi = hs(kv.first) % _tables.size();// 负载因⼦==1扩容if (_n == _tables.size()){/*HashTable<K, V> newHT;newHT._tables.resize(__stl_next_prime(_tables.size()+1);for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while(cur){newHT.Insert(cur->_kv);cur = cur->_next;}} _tables.swap(newHT._tables);*/// 这⾥如果使⽤上⾯的⽅法,扩容时创建新的结点,后⾯还要使用就结点,浪费了// 下⾯的⽅法,直接移动旧表的结点到新表,效率更好vector<Node*>newtables(__stl_next_prime(_tables.size() + 1), nullptr);for (size_t i = 0; i < _tables.size(); i++){Node* cur = _tables[i];while (cur){Node* next = cur->_next;// 旧表中节点,挪动新表重新映射的位置size_t hashi = hs(cur->_kv.first) %newtables.size();// 头插到新表cur->_next = newtables[hashi];newtables[hashi] = cur;cur = next;} _tables[i] = nullptr;} _tables.swap(newtables);} // 头插Node * newnode = new Node(kv);newnode->_next = _tables[hashi];_tables[hashi] = newnode;++_n;return true;} Node* Find(const K& key){Hash hs;size_t hashi = hs(key) % _tables.size();Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key){return cur;} cur = cur->_next;} return nullptr;}bool Erase(const K& key){Hash hs;size_t hashi = hs(key) % _tables.size();Node* prev = nullptr;Node* cur = _tables[hashi];while (cur){if (cur->_kv.first == key){if (prev == nullptr){_tables[hashi] = cur->_next;} else{prev->_next = cur->_next;} delete cur;--_n;return true;} prev = cur;cur = cur->_next;} return false;}
private:vector<Node*> _tables; // 指针数组size_t _n = 0; // 表中存储数据个数
};
}