当前位置: 首页 > news >正文

LangGraph(四)——加入人机交互控制

目录

  • 1. 引言
  • 2. 添加Human Assistance工具
  • 3. 编译状态图
  • 4. 提示聊天机器人
  • 5. 恢复执行
  • 参考

1. 引言

  智能体可能不可靠,甚至需要人工输入才能完成任务。同样,对于某些操作,你可能需要在运行前获得人工批准,以保证一切按预期运行。
  LangGraph的持久层支持人机交互工作流,允许根据用户反馈暂停和恢复执行。此功能的主要接口是interrupt函数。在节点内部调用Interrupt将暂停执行。可以通过传入command来interrupt执行,并接收新的人工输入。interrupt在人机工程学上类似于Python的内置input(),但也有一些注意事项。

2. 添加Human Assistance工具

  初始化聊天模型:

from langchain.chat_models import init_chat_modelllm = init_chat_model("deepseek:deepseek-chat"
)

  使用附加工具将human assistance附加到状态图中:

from typing import Annotatedfrom langchain_tavily import TavilySearch
from langchain_core.tools import tool
from typing_extensions import TypedDictfrom langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import StateGraph, START, END
from langgraph.graph.message import add_messages
from langgraph.prebuilt import ToolNode, tools_conditionfrom langgraph.types import Command, interruptclass State(TypedDict):messages: Annotated[list, add_messages]graph_builder = StateGraph(State)@tool
def human_assistance(query: str) -> str:"""Request assistance from a human."""human_response = interrupt({"query": query})return human_response["data"]tool = TavilySearch(max_results=2)
tools = [tool, human_assistance]
llm_with_tools = llm.bind_tools(tools)def chatbot(state: State):message = llm_with_tools.invoke(state["messages"])# Because we will be interrupting during tool execution,# we disable parallel tool calling to avoid repeating any# tool invocations when we resume.assert len(message.tool_calls) <= 1return {"messages": [message]}graph_builder.add_node("chatbot", chatbot)tool_node = ToolNode(tools=tools)
graph_builder.add_node("tools", tool_node)graph_builder.add_conditional_edges("chatbot",tools_condition,
)
graph_builder.add_edge("tools", "chatbot")
graph_builder.add_edge(START, "chatbot")

3. 编译状态图

  使用检查点编译状态图:

memory = MemorySaver()graph = graph_builder.compile(checkpointer=memory)

4. 提示聊天机器人

  向聊天机器人提出一个问题,该问题将使用human assistance工具:

user_input = "I need some expert guidance for building an AI agent. Could you request assistance for me?"
config = {"configurable": {"thread_id": "1"}}events = graph.stream({"messages": [{"role": "user", "content": user_input}]},config,stream_mode="values",
)
for event in events:if "messages" in event:event["messages"][-1].pretty_print()

  运行结果为:
在这里插入图片描述
  聊天机器人生成了一个工具调用,但随后执行被中断。如果你检查状态图,会发现它在工具节点处停止了:

snapshot = graph.get_state(config)
snapshot.next

  运行结果为:

('tools',)

5. 恢复执行

  要恢复执行需要传递一个包含工具所需数据的Command对象。此数据的格式可根据需要自定义。在本例中,使用一个带有键”data"字典:

human_response = ("We, the experts are here to help! We'd recommend you check out LangGraph to build your agent."" It's much more reliable and extensible than simple autonomous agents."
)human_command = Command(resume={"data": human_response})events = graph.stream(human_command, config, stream_mode="values")
for event in events:if "messages" in event:event["messages"][-1].pretty_print()

  运行结果为:

================================== Ai Message ==================================
Tool Calls:human_assistance (call_0_cee258cf-15db-49d4-8495-46761c7ddc65)Call ID: call_0_cee258cf-15db-49d4-8495-46761c7ddc65Args:query: I need expert guidance for building an AI agent.
================================= Tool Message =================================
Name: human_assistanceWe, the experts are here to help! We'd recommend you check out LangGraph to build your agent. It's much more reliable and extensible than simple autonomous agents.
================================== Ai Message ==================================Great! It seems the experts recommend using **LangGraph** for building your AI agent, as it is more reliable and extensible compared to simple autonomous agents. If you'd like, I can provide more details about LangGraph or assist you with specific steps to get started. Let me know how you'd like to proceed!

参考

https://langchain-ai.github.io/langgraph/tutorials/get-started/4-human-in-the-loop/

相关文章:

  • 开源项目实战学习之YOLO11:12.3 ultralytics-models-sam-encoders.py源码分析
  • DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态
  • Vue3——父子组件通信
  • Android7 Input(七)App与input系统服务建立连接
  • 灵光一现的问题和常见错误1
  • 搭建基于Windows平台的http文件服务(miniserve+filebrowser+nssm)
  • Datawhale PyPOTS时间序列5月第3次笔记
  • 湖北理元理律师事务所:债务优化中的双维支持实践解析
  • 一分钟用 MCP 上线一个 贪吃蛇 小游戏(CodeBuddy版)
  • java中的运算符
  • 多线程(4)——线程安全,锁
  • 数学复习笔记 16
  • 在 Linux 上安装 MATLAB:完整指南与疑难解决方案
  • 交流学习 | 江西同为科技有限公司赴海尔总部考察交流
  • Spring源码之解决循环依赖 三级缓存
  • Python二进制运算:高效操作与实用技巧
  • OpenHarmony外设驱动使用 (二),Camera
  • [ctfshow web入门] web118
  • hysAnalyser 从MPEG-TS导出ES功能说明
  • Leaflet使用SVG创建动态Legend
  • 国宝归来!子弹库帛书二、三卷抵达北京
  • 香港特区政府强烈谴责美参议员恐吓国安人员
  • 中国情怀:时代记录与家国镜相|澎湃·镜相第三届非虚构写作大赛暨七猫第六届百万奖金现实题材征文大赛征稿启事
  • 俄媒:俄乌伊斯坦布尔谈判将于北京时间今天17时30分开始
  • 2000多年前的“新衣”长这样!马王堆文物研究新成果上新
  • 曾犯强奸罪教师出狱后办教培机构?柳州鱼峰区教育局:正核实