当前位置: 首页 > news >正文

RPC框架源码分析学习(二)

RPC框架源码分析与原理解读

前言

在分布式系统开发中,远程过程调用(RPC)是一项基础且关键的技术。通过对KVstorageBaseRaft-cpp项目RPC模块的源码分析,我深入理解了RPC框架的工作原理和实现细节。本文将从程序员视角分享我的学习心得。

框架概述

本项目中的RPC框架是一个基于Google Protobuf和Muduo网络库实现的C++版RPC框架。它支持服务注册、服务发现和远程方法调用,提供了简洁的接口和高效的数据传输机制。

核心组件分析

1. RPC通信协议

首先,我分析了RPC通信协议的定义文件rpcheader.proto

syntax = "proto3";
package RPC;// RPC请求和响应的消息格式
message RpcHeader {string service_name = 1;  // 服务名string method_name = 2;   // 方法名uint32 args_size = 3;     // 参数大小
}

这个定义非常精简,包含了服务名、方法名和参数大小三个关键信息,这些信息构成了RPC请求的头部。

2. RPC客户端实现

2.1 MprpcChannel类

MprpcChannel是客户端发起RPC调用的核心类,继承自google::protobuf::RpcChannel

class MprpcChannel : public google::protobuf::RpcChannel {
public:// 构造函数,支持立即连接或延迟连接MprpcChannel(string ip, short port, bool connectNow);// 关键方法:负责序列化请求、发送请求并接收响应void CallMethod(const google::protobuf::MethodDescriptor* method,google::protobuf::RpcController* controller,const google::protobuf::Message* request,google::protobuf::Message* response,google::protobuf::Closure* done) override;// 其他辅助方法...
};

CallMethod的实现最为关键,它完成了:

  1. 获取服务名和方法名
  2. 序列化请求参数
  3. 构造RPC请求头
  4. 发送请求并等待响应
  5. 解析响应数据

我特别注意到请求消息格式的设计:

header_size(4字节变长编码) + header_str + args_str

这种设计保证了网络传输的高效性和兼容性。

3. RPC服务端实现

3.1 RpcProvider类

RpcProvider是服务端的核心类,负责服务注册和请求处理:

class RpcProvider {
public:// 注册服务void NotifyService(google::protobuf::Service *service);// 启动RPC服务void Run(int nodeIndex, short port);
private:// 连接回调void OnConnection(const muduo::net::TcpConnectionPtr &);// 消息回调,处理RPC请求void OnMessage(const muduo::net::TcpConnectionPtr &, muduo::net::Buffer *, muduo::Timestamp);// 发送RPC响应void SendRpcResponse(const muduo::net::TcpConnectionPtr &, google::protobuf::Message *);// 其他成员...
};
3.2 服务注册机制

服务注册利用了Protobuf的反射机制,通过NotifyService方法实现:

void RpcProvider::NotifyService(google::protobuf::Service *service) {ServiceInfo service_info;const google::protobuf::ServiceDescriptor *pserviceDesc = service->GetDescriptor();std::string service_name = pserviceDesc->name();int methodCnt = pserviceDesc->method_count();for (int i = 0; i < methodCnt; ++i) {const google::protobuf::MethodDescriptor *pmethodDesc = pserviceDesc->method(i);std::string method_name = pmethodDesc->name();     service_info.m_methodMap.insert({method_name, pmethodDesc});}service_info.m_service = service;m_serviceMap.insert({service_name, service_info});
}

这段代码通过Protobuf的反射机制获取服务描述符和方法描述符,并将它们存储在哈希表中,以便后续查找和调用。

3.3 请求处理流程

OnMessage方法处理接收到的RPC请求:

  1. 解析请求头,获取服务名、方法名和参数大小
  2. 查找对应的服务和方法
  3. 反序列化请求参数
  4. 创建响应对象和回调
  5. 调用目标方法

最关键的部分是动态调用目标方法:

service->CallMethod(method, nullptr, request, response, done);

这里用到了Protobuf的动态调用机制,method是之前通过反射获取的方法描述符,done是一个回调对象,用于处理方法执行完成后的操作。

3.4 回调机制实现

回调函数的创建使用了Protobuf提供的NewCallback模板函数:

google::protobuf::Closure *done =google::protobuf::NewCallback<RpcProvider, const muduo::net::TcpConnectionPtr &, google::protobuf::Message *>(this, &RpcProvider::SendRpcResponse, conn, response);

这段代码创建了一个绑定了当前对象、连接和响应对象的回调函数,在RPC方法执行完成后将被调用,用于发送响应数据。

实例分析:RPC示例代码

通过分析example/rpcExample目录下的示例,进一步理解了RPC框架的使用方法。

1. 服务定义

service FiendServiceRpc {rpc GetFriendsList(GetFriendsListRequest) returns (GetFriendsListResponse);
}

2. 服务实现

class FriendService : public fixbug::FiendServiceRpc {
public:void GetFriendsList(google::protobuf::RpcController* controller,const fixbug::GetFriendsListRequest* request,fixbug::GetFriendsListResponse* response,google::protobuf::Closure* done) override {// 业务逻辑实现response->mutable_result()->set_errcode(0);response->mutable_result()->set_errmsg("");done->Run();  // 调用完成,发送响应}
};

3. 服务注册与启动

int main(int argc, char** argv) {// 创建RPC服务提供者RpcProvider provider;// 创建服务对象FriendService friendService;// 注册服务provider.NotifyService(&friendService);// 启动RPC服务,指定节点ID和端口provider.Run(1, 8000);return 0;
}

技术难点解析

1. 模板与回调函数

RPC框架中大量使用了C++模板和回调函数,这是一个重要的技术点。特别是NewCallback函数的使用:

google::protobuf::NewCallback<Class, ArgType1, ArgType2>(this, &Class::Method, arg1, arg2);

这里模板参数<Class, ArgType1, ArgType2>指定了回调函数的类型和参数类型,而函数参数则提供了具体的对象、方法和参数值。

2. 序列化与网络传输

RPC框架的另一个关键点是如何高效地序列化和网络传输。我分析了其实现方式:

  1. 使用Protobuf进行序列化,保证了跨平台兼容性
  2. 采用"头部大小+头部内容+参数内容"的消息格式,解决了TCP流数据的边界问题
  3. 使用Muduo网络库处理TCP连接和事件回调,提供了高性能的网络IO

2025.5.15

相关文章:

  • 什么是路由器环回接口?
  • 鸿蒙OSUniApp 开发的文件上传与下载功能#三方框架 #Uniapp
  • 高云FPGA-新增输出管脚约束
  • 如何检测网站是否支持IPv6?有哪些IPv6测试指标?
  • upload-labs靶场通关详解:第6-9关
  • 【歌曲结构】1:基于歌词的歌曲结构分析:高潮、钩子、双副歌
  • 开发日常中的抓包工具经验谈:Charles 抓包工具与其它选项对比
  • 基于大模型预测胃穿孔预测与围手术期管理系统技术方案
  • React 轻量级富文本编辑器推荐(中文版)
  • 【大模型面试每日一题】Day 19:如何设计自动化评估框架验证大模型的多步推理能力(如数学解题)?
  • 课程11. 计算机视觉、自编码器和生成对抗网络 (GAN)
  • Leetcode刷题 | Day63_图论08_拓扑排序
  • 国标GB28181视频平台EasyGBS助力智慧医院打造全方位视频监控联网服务体系
  • 【氮化镓】HfO2钝化优化GaN 器件性能
  • 傻子学编程之——数据库如何性能优化
  • VScode各文件转化为PDF的方法
  • 傻子学编程之——Java并发编程的问题与挑战
  • Rust 数据结构:Vector
  • Java并发编程:锁机制
  • VBA_NZ系列工具NZ10:VBA压缩与解压工具
  • 蒋圣龙突遭伤病出战世预赛存疑,国足生死战后防线严重减员
  • 湖北宜化拟斥资超32亿加价回购“弃子”,布局上游煤炭业务
  • 视频丨中国海警成功救助8名外籍遇险渔民,韩方向中方致谢
  • 京东美团饿了么等外卖平台被约谈
  • 多地警务新媒体整合:关停交警等系统账号,统一信息发布渠道
  • 山西省委常委李金科添新职