当前位置: 首页 > news >正文

第28周——InceptionV1实现猴痘识别

前言 

  •  🍨 本文为🔗365天深度学习训练营中的学习记录博客
  • 🍖 原作者:K同学啊

一、前期准备

1.检查GPU

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasetsimport os,PIL,pathlibdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")device

2.查看数据

import os,PIL,random,pathlibdata_dir = 'data/45-data/'
data_dir = pathlib.Path(data_dir)data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[2] for path in data_paths]
classeNames

二、构建模型

1.划分数据集

total_datadir = 'data/45-data'train_transforms = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
total_datatrain_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_datasettrain_size,test_sizebatch_size = 32train_dl = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True,num_workers=1)for X, y in test_dl:print("Shape of X [N, C, H, W]: ", X.shape)print("Shape of y: ", y.shape, y.dtype)break
Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

2.创建模型

import torch
import torch.nn as nn
import torch.nn.functional as Fclass inception_block(nn.Module):def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):super().__init__()# 1x1 conv branchself.branch1 = nn.Sequential(nn.Conv2d(in_channels, ch1x1, kernel_size=1),nn.BatchNorm2d(ch1x1),nn.ReLU(inplace=True))# 1x1 -> 3x3 conv branchself.branch2 = nn.Sequential(nn.Conv2d(in_channels, ch3x3red, kernel_size=1),nn.BatchNorm2d(ch3x3red),nn.ReLU(inplace=True),nn.Conv2d(ch3x3red, ch3x3, kernel_size=3, padding=1),nn.BatchNorm2d(ch3x3),nn.ReLU(inplace=True))# 1x1 -> 5x5 conv branchself.branch3 = nn.Sequential(nn.Conv2d(in_channels, ch5x5red, kernel_size=1),nn.BatchNorm2d(ch5x5red),nn.ReLU(inplace=True),nn.Conv2d(ch5x5red, ch5x5, kernel_size=5, padding=2),nn.BatchNorm2d(ch5x5),nn.ReLU(inplace=True))# 3x3 pool -> 1x1 conv branchself.branch4 = nn.Sequential(nn.MaxPool2d(kernel_size=3, stride=1, padding=1),nn.Conv2d(in_channels, pool_proj, kernel_size=1),nn.BatchNorm2d(pool_proj),nn.ReLU(inplace=True))def forward(self, x):return torch.cat([self.branch1(x),self.branch2(x),self.branch3(x),self.branch4(x)], dim=1)  # 沿通道维度拼接class InceptionV1(nn.Module):def __init__(self, num_classes=1000):super().__init__()# 初始卷积层self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)self.maxpool1 = nn.MaxPool2d(3, stride=2, padding=1)self.conv2 = nn.Conv2d(64, 64, kernel_size=1)self.conv3 = nn.Conv2d(64, 192, kernel_size=3, padding=1)self.maxpool2 = nn.MaxPool2d(3, stride=2, padding=1)# Inception 模块self.inception3a = inception_block(192, 64, 96, 128, 16, 32, 32)  # 输出通道: 64+128+32+32=256self.inception3b = inception_block(256, 128, 128, 192, 32, 96, 64)  # 输出: 128+192+96+64=480self.maxpool3 = nn.MaxPool2d(3, stride=2, padding=1)self.inception4a = inception_block(480, 192, 96, 208, 16, 48, 64)  # 192+208+48+64=512self.inception4b = inception_block(512, 160, 112, 224, 24, 64, 64)  # 160+224+64+64=512self.inception4c = inception_block(512, 128, 128, 256, 24, 64, 64)  # 128+256+64+64=512self.inception4d = inception_block(512, 112, 144, 288, 32, 64, 64)  # 112+288+64+64=528self.inception4e = inception_block(528, 256, 160, 320, 32, 128, 128)  # 256+320+128+128=832self.maxpool4 = nn.MaxPool2d(3, stride=2, padding=1)self.inception5a = inception_block(832, 256, 160, 320, 32, 128, 128)  # 256+320+128+128=832self.inception5b = nn.Sequential(inception_block(832, 384, 192, 384, 48, 128, 128),  # 384+384+128+128=1024nn.AdaptiveAvgPool2d((1, 1)),  # 自适应池化到1x1nn.Dropout(0.4))# 分类器self.classifier = nn.Linear(1024, num_classes)  # 输入特征数必须匹配池化后的通道数def forward(self, x):# 输入形状: [32, 3, 224, 224]x = F.relu(self.conv1(x))      # -> [32, 64, 112, 112]x = self.maxpool1(x)           # -> [32, 64, 56, 56]x = F.relu(self.conv2(x))      # -> [32, 64, 56, 56]x = F.relu(self.conv3(x))      # -> [32, 192, 56, 56]x = self.maxpool2(x)           # -> [32, 192, 28, 28]x = self.inception3a(x)        # -> [32, 256, 28, 28]x = self.inception3b(x)        # -> [32, 480, 28, 28]x = self.maxpool3(x)           # -> [32, 480, 14, 14]x = self.inception4a(x)        # -> [32, 512, 14, 14]x = self.inception4b(x)        # -> [32, 512, 14, 14]x = self.inception4c(x)        # -> [32, 512, 14, 14]x = self.inception4d(x)        # -> [32, 528, 14, 14]x = self.inception4e(x)        # -> [32, 832, 14, 14]x = self.maxpool4(x)           # -> [32, 832, 7, 7]x = self.inception5a(x)        # -> [32, 832, 7, 7]x = self.inception5b(x)        # -> [32, 1024, 1, 1]x = torch.flatten(x, 1)        # -> [32, 1024]x = self.classifier(x)         # -> [32, num_classes]return x# 测试代码
if __name__ == "__main__":model = InceptionV1(num_classes=1000)dummy_input = torch.randn(32, 3, 224, 224)  # 匹配输入形状[N, C, H, W]=[32,3,224,224]output = model(dummy_input)print("Output shape:", output.shape)  # 应输出 torch.Size([32, 1000])
from torchsummary import summary
model=InceptionV1().to(device)
# 将模型移动到GPU(如果可用)summary(model, (3, 224, 224))
print(model)
Output shape: torch.Size([32, 1000])
----------------------------------------------------------------Layer (type)               Output Shape         Param #
================================================================Conv2d-1         [-1, 64, 112, 112]           9,472MaxPool2d-2           [-1, 64, 56, 56]               0Conv2d-3           [-1, 64, 56, 56]           4,160Conv2d-4          [-1, 192, 56, 56]         110,784MaxPool2d-5          [-1, 192, 28, 28]               0Conv2d-6           [-1, 64, 28, 28]          12,352BatchNorm2d-7           [-1, 64, 28, 28]             128ReLU-8           [-1, 64, 28, 28]               0Conv2d-9           [-1, 96, 28, 28]          18,528BatchNorm2d-10           [-1, 96, 28, 28]             192ReLU-11           [-1, 96, 28, 28]               0Conv2d-12          [-1, 128, 28, 28]         110,720BatchNorm2d-13          [-1, 128, 28, 28]             256ReLU-14          [-1, 128, 28, 28]               0Conv2d-15           [-1, 16, 28, 28]           3,088BatchNorm2d-16           [-1, 16, 28, 28]              32ReLU-17           [-1, 16, 28, 28]               0Conv2d-18           [-1, 32, 28, 28]          12,832BatchNorm2d-19           [-1, 32, 28, 28]              64ReLU-20           [-1, 32, 28, 28]               0MaxPool2d-21          [-1, 192, 28, 28]               0Conv2d-22           [-1, 32, 28, 28]           6,176BatchNorm2d-23           [-1, 32, 28, 28]              64ReLU-24           [-1, 32, 28, 28]               0inception_block-25          [-1, 256, 28, 28]               0Conv2d-26          [-1, 128, 28, 28]          32,896BatchNorm2d-27          [-1, 128, 28, 28]             256ReLU-28          [-1, 128, 28, 28]               0Conv2d-29          [-1, 128, 28, 28]          32,896BatchNorm2d-30          [-1, 128, 28, 28]             256ReLU-31          [-1, 128, 28, 28]               0Conv2d-32          [-1, 192, 28, 28]         221,376BatchNorm2d-33          [-1, 192, 28, 28]             384ReLU-34          [-1, 192, 28, 28]               0Conv2d-35           [-1, 32, 28, 28]           8,224BatchNorm2d-36           [-1, 32, 28, 28]              64ReLU-37           [-1, 32, 28, 28]               0Conv2d-38           [-1, 96, 28, 28]          76,896BatchNorm2d-39           [-1, 96, 28, 28]             192ReLU-40           [-1, 96, 28, 28]               0MaxPool2d-41          [-1, 256, 28, 28]               0Conv2d-42           [-1, 64, 28, 28]          16,448BatchNorm2d-43           [-1, 64, 28, 28]             128ReLU-44           [-1, 64, 28, 28]               0inception_block-45          [-1, 480, 28, 28]               0MaxPool2d-46          [-1, 480, 14, 14]               0Conv2d-47          [-1, 192, 14, 14]          92,352BatchNorm2d-48          [-1, 192, 14, 14]             384ReLU-49          [-1, 192, 14, 14]               0Conv2d-50           [-1, 96, 14, 14]          46,176BatchNorm2d-51           [-1, 96, 14, 14]             192ReLU-52           [-1, 96, 14, 14]               0Conv2d-53          [-1, 208, 14, 14]         179,920BatchNorm2d-54          [-1, 208, 14, 14]             416ReLU-55          [-1, 208, 14, 14]               0Conv2d-56           [-1, 16, 14, 14]           7,696BatchNorm2d-57           [-1, 16, 14, 14]              32ReLU-58           [-1, 16, 14, 14]               0Conv2d-59           [-1, 48, 14, 14]          19,248BatchNorm2d-60           [-1, 48, 14, 14]              96ReLU-61           [-1, 48, 14, 14]               0MaxPool2d-62          [-1, 480, 14, 14]               0Conv2d-63           [-1, 64, 14, 14]          30,784BatchNorm2d-64           [-1, 64, 14, 14]             128ReLU-65           [-1, 64, 14, 14]               0inception_block-66          [-1, 512, 14, 14]               0Conv2d-67          [-1, 160, 14, 14]          82,080BatchNorm2d-68          [-1, 160, 14, 14]             320ReLU-69          [-1, 160, 14, 14]               0Conv2d-70          [-1, 112, 14, 14]          57,456BatchNorm2d-71          [-1, 112, 14, 14]             224ReLU-72          [-1, 112, 14, 14]               0Conv2d-73          [-1, 224, 14, 14]         226,016BatchNorm2d-74          [-1, 224, 14, 14]             448ReLU-75          [-1, 224, 14, 14]               0Conv2d-76           [-1, 24, 14, 14]          12,312BatchNorm2d-77           [-1, 24, 14, 14]              48ReLU-78           [-1, 24, 14, 14]               0Conv2d-79           [-1, 64, 14, 14]          38,464BatchNorm2d-80           [-1, 64, 14, 14]             128ReLU-81           [-1, 64, 14, 14]               0MaxPool2d-82          [-1, 512, 14, 14]               0Conv2d-83           [-1, 64, 14, 14]          32,832BatchNorm2d-84           [-1, 64, 14, 14]             128ReLU-85           [-1, 64, 14, 14]               0inception_block-86          [-1, 512, 14, 14]               0Conv2d-87          [-1, 128, 14, 14]          65,664BatchNorm2d-88          [-1, 128, 14, 14]             256ReLU-89          [-1, 128, 14, 14]               0Conv2d-90          [-1, 128, 14, 14]          65,664BatchNorm2d-91          [-1, 128, 14, 14]             256ReLU-92          [-1, 128, 14, 14]               0Conv2d-93          [-1, 256, 14, 14]         295,168BatchNorm2d-94          [-1, 256, 14, 14]             512ReLU-95          [-1, 256, 14, 14]               0Conv2d-96           [-1, 24, 14, 14]          12,312BatchNorm2d-97           [-1, 24, 14, 14]              48ReLU-98           [-1, 24, 14, 14]               0Conv2d-99           [-1, 64, 14, 14]          38,464BatchNorm2d-100           [-1, 64, 14, 14]             128ReLU-101           [-1, 64, 14, 14]               0MaxPool2d-102          [-1, 512, 14, 14]               0Conv2d-103           [-1, 64, 14, 14]          32,832BatchNorm2d-104           [-1, 64, 14, 14]             128ReLU-105           [-1, 64, 14, 14]               0inception_block-106          [-1, 512, 14, 14]               0Conv2d-107          [-1, 112, 14, 14]          57,456BatchNorm2d-108          [-1, 112, 14, 14]             224ReLU-109          [-1, 112, 14, 14]               0Conv2d-110          [-1, 144, 14, 14]          73,872BatchNorm2d-111          [-1, 144, 14, 14]             288ReLU-112          [-1, 144, 14, 14]               0Conv2d-113          [-1, 288, 14, 14]         373,536BatchNorm2d-114          [-1, 288, 14, 14]             576ReLU-115          [-1, 288, 14, 14]               0Conv2d-116           [-1, 32, 14, 14]          16,416BatchNorm2d-117           [-1, 32, 14, 14]              64ReLU-118           [-1, 32, 14, 14]               0Conv2d-119           [-1, 64, 14, 14]          51,264BatchNorm2d-120           [-1, 64, 14, 14]             128ReLU-121           [-1, 64, 14, 14]               0MaxPool2d-122          [-1, 512, 14, 14]               0Conv2d-123           [-1, 64, 14, 14]          32,832BatchNorm2d-124           [-1, 64, 14, 14]             128ReLU-125           [-1, 64, 14, 14]               0inception_block-126          [-1, 528, 14, 14]               0Conv2d-127          [-1, 256, 14, 14]         135,424BatchNorm2d-128          [-1, 256, 14, 14]             512ReLU-129          [-1, 256, 14, 14]               0Conv2d-130          [-1, 160, 14, 14]          84,640BatchNorm2d-131          [-1, 160, 14, 14]             320ReLU-132          [-1, 160, 14, 14]               0Conv2d-133          [-1, 320, 14, 14]         461,120BatchNorm2d-134          [-1, 320, 14, 14]             640ReLU-135          [-1, 320, 14, 14]               0Conv2d-136           [-1, 32, 14, 14]          16,928BatchNorm2d-137           [-1, 32, 14, 14]              64ReLU-138           [-1, 32, 14, 14]               0Conv2d-139          [-1, 128, 14, 14]         102,528BatchNorm2d-140          [-1, 128, 14, 14]             256ReLU-141          [-1, 128, 14, 14]               0MaxPool2d-142          [-1, 528, 14, 14]               0Conv2d-143          [-1, 128, 14, 14]          67,712BatchNorm2d-144          [-1, 128, 14, 14]             256ReLU-145          [-1, 128, 14, 14]               0inception_block-146          [-1, 832, 14, 14]               0MaxPool2d-147            [-1, 832, 7, 7]               0Conv2d-148            [-1, 256, 7, 7]         213,248BatchNorm2d-149            [-1, 256, 7, 7]             512ReLU-150            [-1, 256, 7, 7]               0Conv2d-151            [-1, 160, 7, 7]         133,280BatchNorm2d-152            [-1, 160, 7, 7]             320ReLU-153            [-1, 160, 7, 7]               0Conv2d-154            [-1, 320, 7, 7]         461,120BatchNorm2d-155            [-1, 320, 7, 7]             640ReLU-156            [-1, 320, 7, 7]               0Conv2d-157             [-1, 32, 7, 7]          26,656BatchNorm2d-158             [-1, 32, 7, 7]              64ReLU-159             [-1, 32, 7, 7]               0Conv2d-160            [-1, 128, 7, 7]         102,528BatchNorm2d-161            [-1, 128, 7, 7]             256ReLU-162            [-1, 128, 7, 7]               0MaxPool2d-163            [-1, 832, 7, 7]               0Conv2d-164            [-1, 128, 7, 7]         106,624BatchNorm2d-165            [-1, 128, 7, 7]             256ReLU-166            [-1, 128, 7, 7]               0inception_block-167            [-1, 832, 7, 7]               0Conv2d-168            [-1, 384, 7, 7]         319,872BatchNorm2d-169            [-1, 384, 7, 7]             768ReLU-170            [-1, 384, 7, 7]               0Conv2d-171            [-1, 192, 7, 7]         159,936BatchNorm2d-172            [-1, 192, 7, 7]             384ReLU-173            [-1, 192, 7, 7]               0Conv2d-174            [-1, 384, 7, 7]         663,936BatchNorm2d-175            [-1, 384, 7, 7]             768ReLU-176            [-1, 384, 7, 7]               0Conv2d-177             [-1, 48, 7, 7]          39,984BatchNorm2d-178             [-1, 48, 7, 7]              96ReLU-179             [-1, 48, 7, 7]               0Conv2d-180            [-1, 128, 7, 7]         153,728BatchNorm2d-181            [-1, 128, 7, 7]             256ReLU-182            [-1, 128, 7, 7]               0MaxPool2d-183            [-1, 832, 7, 7]               0Conv2d-184            [-1, 128, 7, 7]         106,624BatchNorm2d-185            [-1, 128, 7, 7]             256ReLU-186            [-1, 128, 7, 7]               0inception_block-187           [-1, 1024, 7, 7]               0
AdaptiveAvgPool2d-188           [-1, 1024, 1, 1]               0Dropout-189           [-1, 1024, 1, 1]               0Linear-190                 [-1, 1000]       1,025,000
================================================================
Total params: 7,012,472
Trainable params: 7,012,472
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 69.61
Params size (MB): 26.75
Estimated Total Size (MB): 96.93
----------------------------------------------------------------
InceptionV1((conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3))(maxpool1): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)(conv2): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))(conv3): Conv2d(64, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(maxpool2): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)(inception3a): inception_block((branch1): Sequential((0): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(branch2): Sequential((0): Conv2d(192, 96, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(96, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(4): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(5): ReLU(inplace=True))(branch3): Sequential((0): Conv2d(192, 16, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(4): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(5): ReLU(inplace=True))(branch4): Sequential((0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)(1): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1))(2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(3): ReLU(inplace=True)))(inception3b): inception_block((branch1): Sequential((0): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(branch2): Sequential((0): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(128, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(4): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(5): ReLU(inplace=True))(branch3): Sequential((0): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(32, 96, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(4): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(5): ReLU(inplace=True))(branch4): Sequential((0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)(1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))(2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(3): ReLU(inplace=True)))(maxpool3): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)(inception4a): inception_block((branch1): Sequential((0): Conv2d(480, 192, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(branch2): Sequential((0): Conv2d(480, 96, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(96, 208, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(4): BatchNorm2d(208, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(5): ReLU(inplace=True))(branch3): Sequential((0): Conv2d(480, 16, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(16, 48, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(4): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(5): ReLU(inplace=True))(branch4): Sequential((0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)(1): Conv2d(480, 64, kernel_size=(1, 1), stride=(1, 1))(2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(3): ReLU(inplace=True)))(inception4b): inception_block((branch1): Sequential((0): Conv2d(512, 160, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(branch2): Sequential((0): Conv2d(512, 112, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(112, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(112, 224, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(4): BatchNorm2d(224, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(5): ReLU(inplace=True))(branch3): Sequential((0): Conv2d(512, 24, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(24, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(5): ReLU(inplace=True))(branch4): Sequential((0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)(1): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1))(2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(3): ReLU(inplace=True)))(inception4c): inception_block((branch1): Sequential((0): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(branch2): Sequential((0): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(5): ReLU(inplace=True))(branch3): Sequential((0): Conv2d(512, 24, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(24, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(5): ReLU(inplace=True))(branch4): Sequential((0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)(1): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1))(2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(3): ReLU(inplace=True)))(inception4d): inception_block((branch1): Sequential((0): Conv2d(512, 112, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(112, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(branch2): Sequential((0): Conv2d(512, 144, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(144, 288, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(4): BatchNorm2d(288, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(5): ReLU(inplace=True))(branch3): Sequential((0): Conv2d(512, 32, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(4): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(5): ReLU(inplace=True))(branch4): Sequential((0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)(1): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1))(2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(3): ReLU(inplace=True)))(inception4e): inception_block((branch1): Sequential((0): Conv2d(528, 256, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(branch2): Sequential((0): Conv2d(528, 160, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(160, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(4): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(5): ReLU(inplace=True))(branch3): Sequential((0): Conv2d(528, 32, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(32, 128, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(4): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(5): ReLU(inplace=True))(branch4): Sequential((0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)(1): Conv2d(528, 128, kernel_size=(1, 1), stride=(1, 1))(2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(3): ReLU(inplace=True)))(maxpool4): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)(inception5a): inception_block((branch1): Sequential((0): Conv2d(832, 256, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(branch2): Sequential((0): Conv2d(832, 160, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(160, 320, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(4): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(5): ReLU(inplace=True))(branch3): Sequential((0): Conv2d(832, 32, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(32, 128, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(4): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(5): ReLU(inplace=True))(branch4): Sequential((0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)(1): Conv2d(832, 128, kernel_size=(1, 1), stride=(1, 1))(2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(3): ReLU(inplace=True)))(inception5b): Sequential((0): inception_block((branch1): Sequential((0): Conv2d(832, 384, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(branch2): Sequential((0): Conv2d(832, 192, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(4): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(5): ReLU(inplace=True))(branch3): Sequential((0): Conv2d(832, 48, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(48, 128, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(4): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(5): ReLU(inplace=True))(branch4): Sequential((0): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)(1): Conv2d(832, 128, kernel_size=(1, 1), stride=(1, 1))(2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(3): ReLU(inplace=True)))(1): AdaptiveAvgPool2d(output_size=(1, 1))(2): Dropout(p=0.4, inplace=False))(classifier): Linear(in_features=1024, out_features=1000, bias=True)
)

3.编译及训练模型

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片num_batches = len(dataloader)   # 批次数目,1875(60000/32)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_lossdef test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss        = loss_fn(target_pred, target)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_lossepochs     = 20
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

三、结果可视化 

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率from datetime import datetime
current_time = datetime.now() # 获取当前时间epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()


四、总结 

其主要优点在于通过并行使用不同尺寸的卷积核(1×1、3×3、5×5)以及引入1×1卷积进行降维,在有效提升特征提取能力的同时大幅减少了计算量和参数数量,表现出较高的计算效率和良好的实际性能。然而,InceptionV1的网络结构较为复杂,不易手工实现与调试,且固定的卷积核组合在适应不同任务时灵活性不足。此外,虽然其参数量较小,但多分支结构在某些硬件平台上部署并不友好,后续版本也对其做了进一步优化。因此,InceptionV1是一种在性能与效率之间取得良好平衡的网络结构,但在实际应用中仍存在一定的改进空间。

相关文章:

  • K8S Gateway AB测试、蓝绿发布、金丝雀(灰度)发布
  • next.js实现项目搭建
  • 023-C语言预处理详解
  • 致远OA周报日报管理应用包【附百度网盘下载链接,官方售价8K】
  • 采用sherpa-onnx 实现 ios语音唤起的调研
  • 机器学习 --- KNN算法
  • uniapp在APP上如何使用websocket--详解
  • 驱动-定时-秒-字符设备
  • 2025年叉车证备考题库精选含答案
  • Kotlin 和 Java 混合开发时需要注意哪些问题
  • Vue 3 实现后端 Excel 文件流导出功能(Blob 下载详解)
  • 软考软件评测师——软件工程之系统维护
  • 开机自启动python程序_ubuntu22.04
  • 帧差法识别
  • Ubuntu下配置VScode出现#include错误请更新includePath的解决方法
  • Servlet原理
  • 织梦Dedecms模板文件名介绍与说明
  • Qt信号槽机制与UI设计完全指南:从基础原理到实战应用
  • 基于windows环境Oracle主备切换之后OGG同步进程恢复
  • CSP-J/S初赛知识点:计算机网络与Internet基本概念知识点
  • 上海黄浦江挡潮闸工程建设指挥部成立,组成人员名单公布
  • 商务部回应美方加严限制中国芯片:敦促美方立即纠正错误做法
  • 思想史家陈谷嘉逝世,曾为岳麓书院当代复兴奠定重要基础
  • 优化营商环境,服务上海“五个中心”建设,北外滩有何举措?
  • SIFF动画单元公布首批片单:《燃比娃》《凡尔赛玫瑰》等
  • 中国人民抗日战争暨世界反法西斯战争胜利80周年纪念活动标识发布