当前位置: 首页 > news >正文

PostgreSQL MCP 使用案例

## 概述

  

PostgreSQL MCP(PostgreSQL Multi-host Cluster Provisioning)是一种用于部署和管理多节点PostgreSQL集群的工具和架构。它提供了高效的数据库集群管理、高可用性保障和负载均衡功能。本文档将介绍PostgreSQL MCP的基本使用方法和常见应用场景。

  

## 环境准备

  

### 安装PostgreSQL MCP

  

```bash

pip install pg-mcp

```

  

### 基本配置

  

创建配置文件 `pgmcp_config.json`:

  

```json

{

  "masters": [

    {

      "host": "主数据库1 IP",

      "port": 5432,

      "user": "postgres",

      "password": "密码",

      "database": "数据库名"

    },

    {

      "host": "主数据库2 IP",

      "port": 5432,

      "user": "postgres",

      "password": "密码",

      "database": "数据库名"

    }

  ],

  "replicas": [

    {

      "host": "只读副本1 IP",

      "port": 5432,

      "user": "postgres",

      "password": "密码",

      "database": "数据库名"

    },

    {

      "host": "只读副本2 IP",

      "port": 5432,

      "user": "postgres",

      "password": "密码",

      "database": "数据库名"

    }

  ],

  "connection_pool": {

    "min_connections": 5,

    "max_connections": 20,

    "idle_timeout": 300

  },

  "high_availability": {

    "failover_timeout": 30,

    "max_retry_attempts": 3,

    "enable_auto_failover": true

  }

}

```

  

## 基本使用案例

  

### 案例1: 连接数据库集群

  

```python

from pg_mcp import ConnectionPool

  

# 初始化连接池

pool = ConnectionPool.from_config("pgmcp_config.json")

  

# 获取连接

connection = pool.get_connection()

  

try:

    # 使用连接

    with connection.cursor() as cursor:

        cursor.execute("SELECT version()")

        version = cursor.fetchone()

        print(f"PostgreSQL 版本: {version[0]}")

finally:

    # 归还连接到连接池

    connection.close()

```

  

### 案例2: 读写分离

  

```python

from pg_mcp import ConnectionPool

  

pool = ConnectionPool.from_config("pgmcp_config.json")

  

# 写操作 - 使用主库

def insert_data(name, age):

    connection = pool.get_master_connection()

    try:

        with connection.cursor() as cursor:

            sql = "INSERT INTO users (name, age) VALUES (%s, %s)"

            cursor.execute(sql, (name, age))

        connection.commit()

    finally:

        connection.close()

  

# 读操作 - 使用只读副本

def get_user(user_id):

    connection = pool.get_replica_connection()

    try:

        with connection.cursor() as cursor:

            sql = "SELECT * FROM users WHERE id = %s"

            cursor.execute(sql, (user_id,))

            return cursor.fetchone()

    finally:

        connection.close()

  

# 使用示例

insert_data("张三", 25)

user = get_user(1)

print(user)

```

  

### 案例3: 事务处理与MVCC优化

  

```python

from pg_mcp import ConnectionPool

  

pool = ConnectionPool.from_config("pgmcp_config.json")

  

def transfer_money(from_account, to_account, amount):

    connection = pool.get_master_connection()

    try:

        # PostgreSQL默认是事务模式,不需要显式begin

        with connection.cursor() as cursor:

            # 检查余额 - 使用FOR UPDATE避免并发问题

            cursor.execute("SELECT balance FROM accounts WHERE id = %s FOR UPDATE", (from_account,))

            from_balance = cursor.fetchone()[0]

            if from_balance < amount:

                raise Exception("余额不足")

            # 更新转出账户

            cursor.execute("UPDATE accounts SET balance = balance - %s WHERE id = %s",

                          (amount, from_account))

            # 更新转入账户

            cursor.execute("UPDATE accounts SET balance = balance + %s WHERE id = %s",

                          (amount, to_account))

        connection.commit()

        return True

    except Exception as e:

        connection.rollback()

        print(f"转账失败: {e}")

        return False

    finally:

        connection.close()

```

  

### 案例4: 批量操作与COPY命令

  

```python

from pg_mcp import ConnectionPool

import io

import csv

  

pool = ConnectionPool.from_config("pgmcp_config.json")

  

# 使用executemany进行批量插入

def batch_insert(users):

    connection = pool.get_master_connection()

    try:

        with connection.cursor() as cursor:

            sql = "INSERT INTO users (name, age, email) VALUES (%s, %s, %s)"

            cursor.executemany(sql, users)

        connection.commit()

        print(f"成功插入 {len(users)} 条记录")

    finally:

        connection.close()

  

# 使用PostgreSQL的COPY命令进行大批量数据导入(性能更佳)

def bulk_copy(users):

    connection = pool.get_master_connection()

    try:

        # 准备CSV数据

        csv_data = io.StringIO()

        csv_writer = csv.writer(csv_data)

        for user in users:

            csv_writer.writerow(user)

        csv_data.seek(0)

        with connection.cursor() as cursor:

            cursor.copy_from(csv_data, 'users', sep=',', columns=('name', 'age', 'email'))

        connection.commit()

        print(f"成功批量导入 {len(users)} 条记录")

    finally:

        connection.close()

  

# 批量插入示例

users_data = [

    ("李四", 30, "lisi@example.com"),

    ("王五", 25, "wangwu@example.com"),

    ("赵六", 35, "zhaoliu@example.com")

]

batch_insert(users_data)

```

  

### 案例5: 连接池监控与管理

  

```python

from pg_mcp import ConnectionPool

  

pool = ConnectionPool.from_config("pgmcp_config.json")

  

# 获取连接池状态

def get_pool_status():

    status = pool.get_status()

    print(f"总连接数: {status['total_connections']}")

    print(f"活跃连接数: {status['active_connections']}")

    print(f"空闲连接数: {status['idle_connections']}")

    print(f"等待连接数: {status['waiting_connections']}")

    return status

  

# 监控复制延迟

def check_replication_lag():

    connection = pool.get_master_connection()

    try:

        with connection.cursor() as cursor:

            cursor.execute("""

                SELECT client_addr, state, sent_lsn, write_lsn,

                       pg_wal_lsn_diff(sent_lsn, write_lsn) AS lag_bytes

                FROM pg_stat_replication

            """)

            return cursor.fetchall()

    finally:

        connection.close()

  

# 使用示例

get_pool_status()

lag_info = check_replication_lag()

for replica in lag_info:

    print(f"复制节点: {replica[0]}, 状态: {replica[1]}, 延迟: {replica[4]} 字节")

```

  

## 高级用法

  

### 自定义负载均衡策略

  

```python

from pg_mcp import ConnectionPool, LoadBalancer

  

class CustomLoadBalancer(LoadBalancer):

    def select_replica(self, replicas):

        # 自定义选择副本的逻辑

        # 例如: 根据副本的负载情况来选择

        return min(replicas, key=lambda replica: replica.current_load)

  

# 使用自定义负载均衡器

pool = ConnectionPool.from_config("pgmcp_config.json", load_balancer=CustomLoadBalancer())

```

  

### 故障转移与自动恢复

  

```python

from pg_mcp import ConnectionPool, FailoverStrategy

  

# 配置故障转移策略

config = {

    "failover": {

        "check_interval": 5,

        "max_retry_attempts": 3,

        "retry_delay": 1,

        "promote_replica": True

    }

}

  

pool = ConnectionPool.from_config("pgmcp_config.json", failover_strategy=FailoverStrategy(**config["failover"]))

  

# 带有故障转移的查询执行

def execute_with_failover(sql, params=None):

    retries = 0

    while retries < 3:

        try:

            connection = pool.get_connection()

            try:

                with connection.cursor() as cursor:

                    cursor.execute(sql, params)

                    return cursor.fetchall()

            finally:

                connection.close()

        except Exception as e:

            retries += 1

            if retries >= 3:

                raise Exception(f"查询失败,已重试3次: {e}")

            print(f"查询失败,正在重试 ({retries}/3)")

```

  

### 使用PostgreSQL特有功能

  

```python

from pg_mcp import ConnectionPool

  

pool = ConnectionPool.from_config("pgmcp_config.json")

  

# 使用JSON数据类型

def store_json_data(user_id, preferences):

    connection = pool.get_master_connection()

    try:

        with connection.cursor() as cursor:

            # PostgreSQL支持直接存储JSON数据

            cursor.execute(

                "INSERT INTO user_preferences (user_id, preferences) VALUES (%s, %s::jsonb)",

                (user_id, json.dumps(preferences))

            )

        connection.commit()

    finally:

        connection.close()

  

# 使用全文搜索

def search_products(query):

    connection = pool.get_replica_connection()

    try:

        with connection.cursor() as cursor:

            cursor.execute("""

                SELECT id, name, description

                FROM products

                WHERE to_tsvector('chinese', name || ' ' || description) @@ plainto_tsquery('chinese', %s)

                ORDER BY ts_rank(to_tsvector('chinese', name), plainto_tsquery('chinese', %s)) DESC

            """, (query, query))

            return cursor.fetchall()

    finally:

        connection.close()

```

  

## 性能优化建议

  

1. **合理设置连接池大小**:根据服务器性能和负载情况调整最小和最大连接数。PostgreSQL默认max_connections为100,应避免连接池总大小超过此值。

  

2. **使用prepared语句**:对于频繁执行的SQL,使用prepared语句可以减少解析开销。

  

   ```python

   connection = pool.get_connection()

   try:

       with connection.cursor() as cursor:

           cursor.execute("PREPARE get_user AS SELECT * FROM users WHERE id = $1")

           cursor.execute("EXECUTE get_user(%s)", (user_id,))

           result = cursor.fetchone()

   finally:

       connection.close()

   ```

  

3. **适当配置PostgreSQL参数**:

   - `shared_buffers`: 通常设置为系统内存的25%

   - `work_mem`: 调整排序和哈希操作的内存使用

   - `maintenance_work_mem`: 提高VACUUM等维护操作性能

   - `effective_cache_size`: 设置为系统可用缓存的估计值

  

4. **启用连接池状态监控**:定期检查连接池状态,避免连接泄漏和资源耗尽。

  

5. **利用PostgreSQL并行查询**:对于大表查询,启用并行查询可提高性能。

  

   ```sql

   SET max_parallel_workers_per_gather = 4;

   ```

  

## 总结

  

PostgreSQL MCP提供了强大的数据库集群管理、高可用性和读写分离功能。通过合理配置和使用MCP,可以显著提高PostgreSQL数据库的性能、可靠性和可扩展性。特别是利用PostgreSQL的高级特性(如JSONB支持、全文搜索和MVCC并发控制),能够构建功能丰富且高效的应用系统。

  

在实际应用中,应根据具体业务需求和系统负载情况,调整PostgreSQL MCP的配置参数,以达到最佳的使用效果。定期的性能监控和维护也是保障系统稳定运行的关键因素。

http://www.dtcms.com/a/192382.html

相关文章:

  • Ascend的aclgraph(九)AclConcreteGraph:e2e执行aclgraph
  • Digi XBee XR 系列介绍
  • 第四章 部件篇之下拉列表部件
  • 用MCP往ppt文件里插入系统架构图
  • [QMT量化交易小白入门]-五十三、总收益率187%,年化收益率在5.57%,二十年回测,每月调仓,获取稳定的收益
  • 用C语言实现了——一个基于顺序表的插入排序演示系统
  • 班会内容模板
  • GitHub 趋势日报 (2025年05月14日)
  • 沃伦森智能无功补偿系统解决电力电容器频繁投切的隐患
  • [特殊字符] 苍穹外卖项目中的 WebSocket 实战:实现来单与催单提醒功能
  • 红黑树解析
  • uniapp x
  • 网络安全EN18031-1,EN18031-2,EN18031-3三个标准对应的测试项目
  • jedis+redis pipeline诡异的链接损坏、数据读取异常问题解决
  • vue使用vite, 渲染glb模型时报错
  • Nginx与Tomcat负载均衡集群配置指南
  • 牛客网NC21994:分钟计算
  • 计量经济学——预测与chow检验
  • [6-8] 编码器接口测速 江协科技学习笔记(7个知识点)
  • 虚拟网络编辑器
  • 【数据结构入门训练DAY-35】棋盘问题
  • Python-Django系列—日志
  • 张 提示词优化(相似计算模式)深度学习中的损失函数优化技巧
  • ES常识9:如何实现同义词映射(搜索)
  • 平滑过滤值策略
  • 时序数据库IoTDB分布式架构解析与运维指南
  • DeepSeek 赋能物联网:从连接到智能的跨越之路
  • 【Pandas】pandas DataFrame diff
  • 语音识别——通过PyAudio录入音频
  • Linux线程控制