牛顿均差知识
牛顿均差
牛顿均差公式
f ( x ) = ∑ i = 0 n [ f [ x 0 , ⋯ , x i ] ⋅ ∏ k = 0 i − 1 ( x − x k ) ] + f [ x 0 , ⋯ , x n , x ] ⋅ ∏ k = 0 n ( x − x k ) f(x) = \sum_{i=0}^{n} \left[ f[x_0, \cdots, x_i] \cdot \prod_{k=0}^{i-1} (x - x_k) \right] + f[x_0, \cdots, x_n, x] \cdot \prod_{k=0}^{n} (x - x_k) f(x)=i=0∑n[f[x0,⋯,xi]⋅k=0∏i−1(x−xk)]+f[x0,⋯,xn,x]⋅k=0∏n(x−xk)
性质证明
均差( D i v i d e d D i f f e r e n c e s \mathcal{Divided\quad Differences} DividedDifferences)的定义为:
f [ x i , x i + 1 , … , x i + k ] = f [ x i + 1 , … , x i + k ] − f [ x i , … , x i + k − 1 ] x i + k − x i f[x_i, x_{i+1}, \ldots, x_{i+k}] = \frac{f[x_{i+1}, \ldots, x_{i+k}] - f[x_i, \ldots, x_{i+k-1}]}{x_{i+k} - x_i} f[xi,xi+1,…,xi+k]=xi+k−xif[xi+1,…,xi+k]−f[xi,…,xi+k−1]
性质1:均差与导数的关系
若函数 f ( x ) f(x) f(x) 在包含节点 x 0 , x 1 , … , x n x_0, x_1, \ldots, x_n x0,x1,…,xn 的区间内存在 n n n 阶导数,则存在一点 ξ \xi ξ 使得:
f [ x 0 , x 1 , … , x n ] = f ( n ) ( ξ ) n ! , ξ ∈ 区间 ( x 0 , x 1 , … , x n ) f[x_0, x_1, \ldots, x_n] = \frac{f^{(n)}(\xi)}{n!}, \quad \xi \in \text{区间}(x_0, x_1, \ldots, x_n) f[x0,x1,…,xn]=n!f(n)(ξ),ξ∈区间(x0,x1,…,xn)
证明
通过牛顿插值多项式的误差项推导。已知 n n n 次插值多项式 N n ( x ) N_n(x) Nn(x) 的误差为:
f ( x ) − N n ( x ) = f [ x 0 , x 1 , … , x n , x ] ⋅ ∏ i = 0 n ( x − x i ) f(x) - N_n(x) = f[x_0, x_1, \ldots, x_n, x] \cdot \prod_{i=0}^{n} (x - x_i) f(x)−Nn(x)=f[x0,x1,…,xn,x]⋅i=0∏n(x−xi)
当 x = x n + 1 x = x_{n+1} x=xn+1 时( x n + 1 x_{n+1} xn+1 为区间内另一点):
f ( x n + 1 ) − N n ( x n + 1 ) = f [ x 0 , x 1 , … , x n , x n + 1 ] ⋅ ∏ i = 0 n ( x n + 1 − x i ) f(x_{n+1}) - N_n(x_{n+1}) = f[x_0, x_1, \ldots, x_n, x_{n+1}] \cdot \prod_{i=0}^{n} (x_{n+1} - x_i) f(xn+1)−Nn(xn+1)=f[x0,x1,…,xn,xn+1]⋅i=0∏n(xn+1−xi)
根据罗尔定理,存在 ξ \xi ξ 使得:
f [ x 0 , x 1 , … , x n , x n + 1 ] = f ( n + 1 ) ( ξ ) ( n + 1 ) ! f[x_0, x_1, \ldots, x_n, x_{n+1}] = \frac{f^{(n+1)}(\xi)}{(n+1)!} f[x0,x1,…,xn,xn+1]=(n+1)!f(n+1)(ξ)
特别地,当 x n + 1 → x n x_{n+1} \to x_n xn+1→xn 时,均差退化为导数形式。
性质2:均差的对称性
均差的值与节点的排列顺序无关,即:
f [ x 0 , x 1 , … , x n ] = f [ x π ( 0 ) , x π ( 1 ) , … , x π ( n ) ] f[x_0, x_1, \ldots, x_n] = f[x_{\pi(0)}, x_{\pi(1)}, \ldots, x_{\pi(n)}] f[x0,x1,…,xn]=f[xπ(0),xπ(1),…,xπ(n)]
其中 π \pi π 是任意排列函数。
证明
通过数学归纳法:
- 基础情况:
当 n = 1 n=1 n=1 时, f [ x 0 , x 1 ] = f ( x 1 ) − f ( x 0 ) x 1 − x 0 f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} f[x0,x1]=x1−x0f(x1)−f(x0),显然对称。
- 归纳假设:
假设对于 n = k n=k n=k 时成立。
- 归纳步骤:对于 n = k + 1 n=k+1 n=k+1,利用均差递推公式:
f [ x 0 , x 1 , … , x k + 1 ] = f [ x 1 , … , x k + 1 ] − f [ x 0 , … , x k ] x k + 1 − x 0 f[x_0, x_1, \ldots, x_{k+1}] = \frac{f[x_1, \ldots, x_{k+1}] - f[x_0, \ldots, x_k]}{x_{k+1} - x_0} f[x0,x1,…,xk+1]=xk+1−x0f[x1,…,xk+1]−f[x0,…,xk]
根据归纳假设,分子中的两项均对称,因此整体对称。
性质3:均差的线性性
若 f ( x ) = a ⋅ g ( x ) + b ⋅ h ( x ) f(x) = a \cdot g(x) + b \cdot h(x) f(x)=a⋅g(x)+b⋅h(x),则:
f [ x 0 , x 1 , … , x n ] = a ⋅ g [ x 0 , x 1 , … , x n ] + b ⋅ h [ x 0 , x 1 , … , x n ] f[x_0, x_1, \ldots, x_n] = a \cdot g[x_0, x_1, \ldots, x_n] + b \cdot h[x_0, x_1, \ldots, x_n] f[x0,x1,…,xn]=a⋅g[x0,x1,…,xn]+b⋅h[x0,x1,…,xn]
证明
通过均差的定义直接推导:
f [ x 0 , x 1 ] = f ( x 1 ) − f ( x 0 ) x 1 − x 0 = a ⋅ g ( x 1 ) + b ⋅ h ( x 1 ) − a ⋅ g ( x 0 ) − b ⋅ h ( x 0 ) x 1 − x 0 = a ⋅ g ( x 1 ) − g ( x 0 ) x 1 − x 0 + b ⋅ h ( x 1 ) − h ( x 0 ) x 1 − x 0 = a ⋅ g [ x 0 , x 1 ] + b ⋅ h [ x 0 , x 1 ] \begin{aligned} f[x_0, x_1] &= \frac{f(x_1) - f(x_0)}{x_1 - x_0} \\ &= \frac{a \cdot g(x_1) + b \cdot h(x_1) - a \cdot g(x_0) - b \cdot h(x_0)}{x_1 - x_0} \\ &= a \cdot \frac{g(x_1) - g(x_0)}{x_1 - x_0} + b \cdot \frac{h(x_1) - h(x_0)}{x_1 - x_0} \\ &= a \cdot g[x_0, x_1] + b \cdot h[x_0, x_1] \end{aligned} f[x0,x1]=x1−x0f(x1)−f(x0)=x1−x0a⋅g(x1)+b⋅h(x1)−a⋅g(x0)−b⋅h(x0)=a⋅x1−x0g(x1)−g(x0)+b⋅x1−x0h(x1)−h(x0)=a⋅g[x0,x1]+b⋅h[x0,x1]
对高阶均差同理可证。
\end{proof}
性质4:均差与多项式的关系
若 f ( x ) f(x) f(x) 是 m m m 次多项式,则:
- 当 n ≤ m n \leq m n≤m 时, n n n 阶均差 f [ x 0 , x 1 , … , x n ] f[x_0, x_1, \ldots, x_n] f[x0,x1,…,xn] 是 m − n m-n m−n 次多项式;
- 当 n > m n > m n>m 时, n n n 阶均差 f [ x 0 , x 1 , … , x n ] = 0 f[x_0, x_1, \ldots, x_n] = 0 f[x0,x1,…,xn]=0。
证明
通过导数性质:
- m m m 次多项式的 m m m 阶导数为常数, m + 1 m+1 m+1 阶导数为零。
- 根据均差与导数的关系:
f [ x 0 , x 1 , … , x n ] = f ( n ) ( ξ ) n ! f[x_0, x_1, \ldots, x_n] = \frac{f^{(n)}(\xi)}{n!} f[x0,x1,…,xn]=n!f(n)(ξ)
当 n > m n > m n>m 时, f ( n ) ( ξ ) = 0 f^{(n)}(\xi) = 0 f(n)(ξ)=0,故均差为零。
性质5:均差的递推性质
均差满足递推公式:
f [ x 0 , x 1 , … , x n ] = f [ x 1 , … , x n ] − f [ x 0 , … , x n − 1 ] x n − x 0 f[x_0, x_1, \ldots, x_n] = \frac{f[x_1, \ldots, x_n] - f[x_0, \ldots, x_{n-1}]}{x_n - x_0} f[x0,x1,…,xn]=xn−x0f[x1,…,xn]−f[x0,…,xn−1]
证明
通过牛顿插值多项式的构造:
- n n n 次插值多项式 N n ( x ) N_n(x) Nn(x) 可表示为:
N n ( x ) = N n − 1 ( x ) + f [ x 0 , x 1 , … , x n ] ⋅ ∏ i = 0 n − 1 ( x − x i ) N_n(x) = N_{n-1}(x) + f[x_0, x_1, \ldots, x_n] \cdot \prod_{i=0}^{n-1} (x - x_i) Nn(x)=Nn−1(x)+f[x0,x1,…,xn]⋅i=0∏n−1(x−xi) - 代入 x = x n x = x_n x=xn 并整理,可得递推公式。
差分与位移算子
例1
Δ ( f k g k ) = f k Δ g k + g k + 1 Δ f k \Delta(f_kg_k)=f_k\Delta g_k + g_{k+1}\Delta f_k Δ(fkgk)=fkΔgk+gk+1Δfk
证明
Δ ( f k g k ) = f k + 1 g k + 1 − f k g k = f k + 1 ( g k + 1 − g k ) + g k + 1 ( f k + 1 − f k ) = f k + 1 Δ g k + g k + 1 Δ f k \begin{align*} \Delta(f_kg_k) &= f_{k+1}g_{k+1} - f_kg_k \\ &= f_{k+1}(g_{k+1} - g_k) + g_{k+1}(f_{k+1} - f_k) \\ &= f_{k+1}\Delta g_k + g_{k+1}\Delta f_k \end{align*} Δ(fkgk)=fk+1gk+1−fkgk=fk+1(gk+1−gk)+gk+1(fk+1−fk)=fk+1Δgk+gk+1Δfk
例2
∑ k = 0 n − 1 f k Δ g k = f n g n − f 0 g 0 − ∑ k = 0 n − 1 g k + 1 Δ f k \sum_{k=0}^{n-1}f_{k}\Delta g_{k}=f_ng_n-f_0g_0-\sum_{k=0}^{n-1}g_{k+1}\Delta f_{k} k=0∑n−1fkΔgk=fngn−f0g0−k=0∑n−1gk+1Δfk
这个是著名的阿贝尔变换
∑ k = m n f k Δ g k = f n + 1 g n + 1 − f m g m − ∑ k = m n − 1 g k + 1 Δ f k \sum_{k=m}^{n}f_{k}\Delta g_{k}=f_{n+1}g_{n+1}-f_mg_m-\sum_{k=m}^{n-1}g_{k+1}\Delta f_{k} k=m∑nfkΔgk=fn+1gn+1−fmgm−k=m∑n−1gk+1Δfk
证明
∑ k = m n f k Δ g k = ∑ k = m n f k g k + 1 − ∑ k = m n f k g k = ∑ k = m n f k g k + 1 − ∑ k = m + 1 n + 1 f k g k + f n + 1 g n + 1 − f m g m = f n + 1 g n + 1 − f m g m − ∑ k = m n − 1 g k + 1 ( f k + 1 − f k ) ) = f n + 1 g n + 1 − f m g m − ∑ k = m n − 1 g k + 1 Δ f k \begin{align*} \sum_{k=m}^{n}f_{k}\Delta g_{k} &=\sum_{k=m}^{n}f_kg_{k+1}-\sum_{k=m}^{n}f_kg_k \\ &=\sum_{k=m}^{n}f_kg_{k+1}-\sum_{k=m+1}^{n+1}f_kg_k+f_{n+1}g_{n+1}-f_{m}g_{m} \\ &=f_{n+1}g_{n+1}-f_mg_m-\sum_{k=m}^{n-1}g_{k+1}(f_{k+1}-f_{k})) \\ &=f_{n+1}g_{n+1}-f_mg_m-\sum_{k=m}^{n-1}g_{k+1}\Delta f_{k} \end{align*} k=m∑nfkΔgk=k=m∑nfkgk+1−k=m∑nfkgk=k=m∑nfkgk+1−k=m+1∑n+1fkgk+fn+1gn+1−fmgm=fn+1gn+1−fmgm−k=m∑n−1gk+1(fk+1−fk))=fn+1gn+1−fmgm−k=m∑n−1gk+1Δfk
赋值: m = 0 , n = n − 1 m=0,n=n-1 m=0,n=n−1即可得到:
∑ k = m n f k Δ g k = f n + 1 g n + 1 − f m g m − ∑ k = m n − 1 g k + 1 Δ f k \sum_{k=m}^{n}f_{k}\Delta g_{k}=f_{n+1}g_{n+1}-f_mg_m-\sum_{k=m}^{n-1}g_{k+1}\Delta f_{k} k=m∑nfkΔgk=fn+1gn+1−fmgm−k=m∑n−1gk+1Δfk